¿Cómo puedo ilustrar la conversión de un número decimal a binario?

¿Cómo puedo ilustrar la conversión de un número decimal a binario?

Me gustaría convertir un número decimal de punto a binario como lo hace el comando \baseexpansionen la respuesta de jfbu a la pregunta:

¿Cómo puedo ilustrar la conversión de decimal a binario?

Por ejemplo, me gustaría convertir números como 0.4075 en base bo 0.A46C en base 10. Lamentablemente no sé programarlo en LaTeX.

¿Alguien lo ha logrado? Javier.

Para mayor precisión: me gustaría el esquema mental:cuadro de imagen

y quiero detenerlo después de iteraciones si es necesario: ingrese la descripción de la imagen aquí

Si tiene un algoritmo mejor para mostrar en LaTeX, estaré muy feliz.

¡Gracias! ¡Hiciste un gran trabajo!

Finalmente, ¿puedo tener lo mismo para cualquier base del 2 al 36 y el resultado escrito con letras como en la imagen de abajo? final

Respuesta1

No se puede convertir de decimal a binario exactamente porque 1/5 necesita infinitos coeficientes. (aunque podemos escribir código para obtener la expansión periódica)

En cuanto a pasar de hexadecimal a decimal, está disponible en formato xintexpr.

Pero como el resultado utilizará xintfracnotación interna, también tomo una \PolDecToStringmacro de polexpr 0.4. (muy reciente, es posible que necesites actualizar tu instalación de TeX).

\documentclass{article}
\usepackage{xintexpr}
\usepackage{xintbinhex}

\usepackage{polexpr}[2018/02/16]% Only for its \PolDecToString commodity!
\begin{document}
\PolDecToString{\xintREZ{\xinttheexpr "0.A46C\relax}}
\end{document}

ingrese la descripción de la imagen aquí


Aquí está la conversión de binario a decimal.

\documentclass{article}
\usepackage{xintexpr}% we could load xintfrac only, but anyhow
% polexpr loads xintexpr
\usepackage{xintbinhex}

\usepackage{polexpr}[2018/02/16]% Only for its \PolDecToString commodity!

\makeatletter
\newcommand\FracBinToDecimal[1]{\romannumeral-`0%
  % to be used on input expanding to
  % <binary digits>[.<binary digits>]
  \expandafter\FracBin@ToDecimal\romannumeral0\xintraw{#1}%
  % the above handles this abusively as if was a decimal number with
  % only 1's and 0's
}%
\def\FracBin@ToDecimal #1/#2[#3]{% something got wrong if #2 is not 1 !
  \ifnum#3<\z@
    \expandafter\@firstoftwo
  \else
    \expandafter\@secondoftwo
  \fi
  {\PolDecToString
     {\xintREZ{\xintiiMul{\xintBinToDec{#1}}{\xintiiPow{5}{-#3}}[#3]}}%
  }%
  {\xintiiMul{\xintBinToDec{#1}}{\xintiiPow{2}{#3}}}%
}%
\makeatother

\newcommand\test[1]{\[#1_b = \FracBinToDecimal{#1}_{10}\]}

\begin{document}    
\test{11001}

\test{11001.11001}

\test{0.0001}

\test{-1111.1111}
\end{document}

ingrese la descripción de la imagen aquí


Después de agregar las hojas de cálculo a OP, se muestra el diseño buscado.

Tenga en cuenta que, si todos los cálculos son exactos, no puede haber errores, como se desprende de las hojas de cálculo de OP.

Podría ser posible agregar un detector de período, pero se debe conservar la memoria de todas las partes fraccionarias anteriores (se convierte en un problema si tiene un período con una longitud del orden de 1000000, por ejemplo). Genéricamente el período comienza inmediatamente después de la marca decimal y podemos detectar cuando comienza más tarde. Sin embargo, es cierto que el período puede ser enormemente largo:

Considere el ejemplo 0.521728515624de la base 16. 1000000000000=10^12son 16^3tiempos 5^12. Entonces tendremos un período que (excepto una coincidencia numérica milagrosa) comenzará 3 dígitos después de la marca decimal. La duración del período (el numerador aquí es primo entre 5) será del orden de 16en el grupo multiplicativo de Z/5^12 Z.

phi(5^12) = 5^12 - 5^11 = 4 * 5^11 = 195312500

Entonces

>>> for i in [2, 4, 5]:
...     pow(16, 195312500//i, 244140625)
... 
1
1
97656251

demuestra que 16es exactamente de orden 5^11 = 48828125en este grupo multiplicativo. Por lo tanto, esta es la duración del período de expansión en base 16 de 0.521728515624: ¡el patrón periódico tiene 48828125dígitos!

En general, vemos que encontrar la duración del período a priori está muy relacionado con factorizar números. Todos los cálculos anteriores podrían haberse realizado bastante rápido con el programa xintexpr adecuado, porque los factores primos son (muy) pequeños. Cuando comenzamos a tener factores primos con más de 8 dígitos, ¡este es un desafío difícil para los cálculos que utilizan solo la macro expansión TeX!

No he usado tabular para permitir saltos de página, lo mejor sería usar algo de TeX; \haligntambién puedes usar quizás el entorno de tabulación de LaTeX (nunca probado). O simplemente cajas de anchos fijos.

\documentclass[french]{article}
\usepackage{xintfrac, xinttools}
\usepackage{polexpr}[2018/02/16]% Pour \PolDecToString
\usepackage{babel}
\usepackage[autolanguage,np]{numprint}
\usepackage{amsmath}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\newcommand\ConvertitEnHexa[2][25]{% #1 MUST BE OF THE 0.<decimal digits> type
  % (we can not use 1/5 because numprint's \np macro does not like the /)
  % the dot will be converted into a comma by \np macro
  % computes 25 digits by default. Abort earlier if all become zeros.
  \noindent Nombre à convertir en base 16: \np{#2}.\par
  \edef\ConvertitNombre{\xintRaw{#2}}%
  \xintiloop[1+1]
  \edef\ConvertitSeizeFoisNombre{\xintMul{16}{\ConvertitNombre}}%
  \edef\ConvertitSeizeFoisNombrePartieInt
      {\xintTTrunc{\ConvertitSeizeFoisNombre}}%
  \edef\ConvertitSeizeFoisNombrePartieFrac
      {\xintTFrac{\ConvertitSeizeFoisNombre}}%
  $16\times\np{\PolDecToString{\ConvertitNombre}}
             = \boxed{\ConvertitSeizeFoisNombrePartieInt} +
               \np{\PolDecToString{\ConvertitSeizeFoisNombrePartieFrac}}$\par
  \let\ConvertitNombre\ConvertitSeizeFoisNombrePartieFrac
  \xintifZero{\ConvertitNombre}{\xintbreakiloop}{}%
  \ifnum#1>\xintiloopindex\space
  \repeat
}
\newcommand\ConvertitFracEnHexa[2][25]{%
  % #1 MUST BE OR EXPAND TO A/B WITH 0 < A < B
  % computes 25 digits by default. Abort earlier if all become zeros.
  \edef\ConvertitNombre{\xintIrr{#2}}%
  \noindent Nombre à convertir en base 16: \ConvertitNombre.\par
  \xintiloop[1+1]
  \edef\ConvertitSeizeFoisNombre{\xintMul{16}{\ConvertitNombre}}%
  \edef\ConvertitSeizeFoisNombrePartieInt
      {\xintTTrunc{\ConvertitSeizeFoisNombre}}%
  \edef\ConvertitSeizeFoisNombrePartieFrac
      {\xintTFrac{\ConvertitSeizeFoisNombre}}%
  $16\times\xintFrac{\xintRawWithZeros\ConvertitNombre}
             = \boxed{\ConvertitSeizeFoisNombrePartieInt} +
               \xintFrac{\xintRawWithZeros\ConvertitSeizeFoisNombrePartieFrac}$\par
  \let\ConvertitNombre\ConvertitSeizeFoisNombrePartieFrac
  \xintifZero{\ConvertitNombre}{\xintbreakiloop}{}%
  \ifnum#1>\xintiloopindex\space
  \repeat
}

\begin{document}
\ConvertitEnHexa{0.99609375}

\bigskip

\ConvertitEnHexa{0.521728515625}
\bigskip

\ConvertitEnHexa{0.521728515624}
et ça peut continuer longtemps avant que l'on voie la période\dots\bigskip

\clearpage
\ConvertitEnHexa[12]{0.4075}
etc\dots

\bigskip

\ConvertitFracEnHexa[12]{4095/4096}

\bigskip

\ConvertitFracEnHexa[7]{1/5}
etc\dots

\bigskip

\ConvertitFracEnHexa[7]{3/7}
etc\dots

\bigskip

\clearpage

\ConvertitFracEnHexa[7]{9/11}
etc\dots

\end{document}

Última actualización. Imágenes actualizadas para corresponder a esto.

\documentclass[french]{article}
\usepackage{xintfrac, xinttools}
\usepackage{polexpr}[2018/02/16]% Pour \PolDecToString
\usepackage{babel}
\usepackage[autolanguage,np]{numprint}
\usepackage{amsmath}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

\newcommand\MiniConvert[1]{\ifcase #1
  0\or 1\or 2\or 3\or 4\or 5\or 6\or 7\or 8\or 9\or A\or B\or C\or D\or E\or
  F\or G\or H\or I\or J\or K\or L\or M\or N\or O\or P\or Q\or R\or S\or T\or
  U\or V\or W\or X\or Y\or Z\else\ERROR\fi}%
\newcommand\ConvertitEnBaseB[3][25]{% #1 MUST BE OF THE 0.<decimal digits> type
  % (we can not use 1/5 because numprint's \np macro does not like the /)
  % the dot will be converted into a comma by \np macro
  % computes 25 digits by default. Abort earlier if all become zeros.
  % #3 = base < 36
     \def\ConvertiDots{\dots}%
  \noindent Nombre à convertir en base #3: \np{#2}.\par
  \def\Converti{0,}%<<<< LOCALIZE TO YOUR LANGUAGE
  \edef\ConvertitNombre{\xintRaw{#2}}%
  \xintiloop[1+1]
  \edef\ConvertitBFoisNombre{\xintMul{#3}{\ConvertitNombre}}%
  \edef\ConvertitBFoisNombrePartieInt
      {\xintTTrunc{\ConvertitBFoisNombre}}%
  \edef\ConvertitBFoisNombrePartieFrac
      {\xintTFrac{\ConvertitBFoisNombre}}%
  $#3\times\np{\PolDecToString{\ConvertitNombre}}
             = \boxed{\ConvertitBFoisNombrePartieInt} +
               \np{\PolDecToString{\ConvertitBFoisNombrePartieFrac}}$
  \hfill
  \llap{${}\longrightarrow{}$\MiniConvert\ConvertitBFoisNombrePartieInt}\par
  \edef\Converti{\Converti\MiniConvert{\ConvertitBFoisNombrePartieInt}}%
  \let\ConvertitNombre\ConvertitBFoisNombrePartieFrac
  \xintifZero{\ConvertitNombre}
    {\xintbreakiloopanddo\let\ConvertiDots\empty.}%
    {}%
  \ifnum#1>\xintiloopindex\space
  \repeat
  \noindent\mbox{}\hfill$\np{#2}=[$\Converti\ConvertiDots$]_{#3}$\par
}
\newcommand\ConvertitFracEnBaseB[3][25]{%
  % #1 MUST BE OR EXPAND TO A/B WITH 0 < A < B
  % computes 25 digits by default. Abort earlier if all become zeros.
     \def\ConvertiDots{\dots}%
  \edef\ConvertitNombre{\xintIrr{#2}}%
  \def\Converti{0,}%<<<< LOCALIZE TO YOUR LANGUAGE
  \noindent Nombre à convertir en base #3: \ConvertitNombre.\par
  \xintiloop[1+1]
  \edef\ConvertitBFoisNombre{\xintMul{#3}{\ConvertitNombre}}%
  \edef\ConvertitBFoisNombrePartieInt
      {\xintTTrunc{\ConvertitBFoisNombre}}%
  \edef\ConvertitBFoisNombrePartieFrac
      {\xintTFrac{\ConvertitBFoisNombre}}% does \xintREZ, not good for us
  $#3\times\xintFrac{\xintRawWithZeros\ConvertitNombre}
             = \boxed{\ConvertitBFoisNombrePartieInt} +
               \xintFrac{\xintRawWithZeros\ConvertitBFoisNombrePartieFrac}$\par
  \hfill
  \llap{${}\longrightarrow{}$\MiniConvert\ConvertitBFoisNombrePartieInt}\par
  \edef\Converti{\Converti\MiniConvert{\ConvertitBFoisNombrePartieInt}}%
  \let\ConvertitNombre\ConvertitBFoisNombrePartieFrac
  \xintifZero{\ConvertitNombre}
    {\xintbreakiloopanddo\let\ConvertiDots\empty.}%
    {}%
  \ifnum#1>\xintiloopindex\space
  \repeat
  \noindent\mbox{}\hfill$\xintFrac{#2}=[$\Converti\ConvertiDots$]_{#3}$\par}%


\begin{document}
\ConvertitEnBaseB{0.99609375}{16}

\bigskip

\ConvertitEnBaseB{0.521728515625}{16}
\bigskip

\ConvertitEnBaseB{0.521728515624}{16}
et ça peut continuer longtemps avant que l'on voie la période\dots\bigskip

\ConvertitEnBaseB[12]{0.4075}{16}
etc\dots

\bigskip

\ConvertitFracEnBaseB[12]{4095/4096}{16}

\bigskip

\ConvertitFracEnBaseB[7]{1/5}{16}
etc\dots

\bigskip

\ConvertitFracEnBaseB[7]{3/7}{16}
etc\dots

\bigskip

\ConvertitFracEnBaseB[10]{9/11}{16}
etc\dots

\bigskip

\ConvertitFracEnBaseB[10]{9/11}{15}
etc\dots

\bigskip

\ConvertitFracEnBaseB[10]{9/11}{14}
etc\dots

\bigskip

\ConvertitFracEnBaseB[15]{9/11}{13}
etc\dots

\bigskip

\ConvertitFracEnBaseB[10]{9/11}{36}
etc\dots

\bigskip

\ConvertitFracEnBaseB[15]{9/11}{2}
etc\dots
\end{document}

ingrese la descripción de la imagen aquí

ingrese la descripción de la imagen aquí

ingrese la descripción de la imagen aquí

ingrese la descripción de la imagen aquí

ingrese la descripción de la imagen aquí

ingrese la descripción de la imagen aquí

información relacionada