Enlaces de ecuaciones visuales en entornos de alineación de amsmath

Enlaces de ecuaciones visuales en entornos de alineación de amsmath

Me gustaría "vincular visualmente" ecuaciones en elalign

Dado que una imagen vale más que muchas palabras, aquí hay un ejemplo que hice en MS Paint para mostrar lo que quiero decir:

ingrese la descripción de la imagen aquí

¿Cómo se podría lograr esto? Un MWE para fines de prueba:

\documentclass{article}
\usepackage{amsmath}
\allowdisplaybreaks

\begin{document}
    First, let us solve the following recursion formula:
        $$ F_{n + 1} = \alpha F_{n} + \beta$$
        \begin{align*}
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t}
        \end{align*}
\end{document}

Respuesta1

Una solución según mi comentario:

\documentclass{article}
\usepackage{amsmath}
\allowdisplaybreaks
\usepackage{tikz}
\def\tikzmark#1{\begin{tikzpicture}[remember picture]\coordinate(#1);\end{tikzpicture}}
\begin{document}
 $$ F_{n + 1} = \alpha F_{n} + \beta$$
        \begin{align*}
            &\tikzmark{A}\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\tikzmark{C}\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
          &\tikzmark{D}\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
      &\tikzmark{B}\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
            &\quad \\
            &\quad F_{n + 1} = \alpha F_{n} + \beta \\
            &\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
            &\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
            &\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
            &\equiv \phi(t) (1 - \alpha t) =  \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t}
        \end{align*}
\begin{tikzpicture}[remember picture,overlay]
  \draw[-,red] (A)--([xshift=-0.6cm]A)|-(B);
   \draw[-,blue] (C)--([xshift=-0.4cm]C)|-(D);
\end{tikzpicture}
\end{document}

Producción:

ingrese la descripción de la imagen aquí

Tenga en cuenta que las líneas comienzan desde el centro de cada fila (cada línea matemática) y es posible que deba ajustarse para que queden centradas con \equivel símbolo.

Quizás pueda automatizar esto más tarde si está interesado. (Una yshift=2mmopción antes de la letra del tikzmark en el comando de dibujo puede solucionarlo manualmente)

información relacionada