Estoy usando el código como se muestra a continuación para escribir paso a paso una pregunta, pero cuando tengo una fracción en otra fracción, se vuelve pequeña y difícil de leer. Deseo que la facción del interior tenga el mismo tamaño que la otra y que sea clara pero no demasiado poblada.
\begin{align*}
\frac{\sin(a+b)}{\cos(a+b)}&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\
\tan(a+b)&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\
&=\frac{\frac{\sin a \cos b}{\cos a \cos b} + \frac{\cos a \sin b}{\cos a \cos b}}{\frac{\cos a \cos b}{\cos a \cos b} - \frac{\sin a \sin b}{\cos a \cos b}}
\\
&=\frac{\frac{\sin a}{\cos a} + \frac{\sin b}{\cos b}}{1 - \frac{\sin a \sin b}{\cos a \cos b}}
\\
&=\frac{\tan a +\tan b }{1 - \tan a \tan b}
\end{align*}
Respuesta1
Puedes usarlo \cfrac
para fracciones anidadas. Sin embargo, esto hace que los denominadores "superiores" estén demasiado cerca de la línea de fracción principal, por lo que se puede compensar agregando una letra fantasma con letras descendentes. No se requiere compensación para los numeradores 'inferiores' si usa \cfrac
(no \dfrac
).
Otra posibilidad sería usar el \mfrac
comando (fracción de tamaño mediano – 80 % de \displaystyle) de nccmath
, para que las fracciones más pequeñas aún sean legibles. A continuación se muestra un ejemplo de ambos métodos:
\documentclass{article}
\usepackage{amsmath, nccmath}
\begin{document}
\begin{align*}
\frac{\sin(a+b)}{\cos(a+b)}&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\
\tan(a+b)&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\[0.5ex]
&=\frac{\cfrac{\sin a \cos b}{\cos a \cos b} + \cfrac{\cos a \sin b}{\cos a \cos b\vphantom{g}}}{\cfrac{\cos a \cos b}{\cos a \cos b} - \cfrac{\sin a \sin b}{\cos a \cos b}}
\\[0.5ex]
&=\frac{\cfrac{\sin a}{\cos a} + \cfrac{\sin b}{\cos b \vphantom{g}}}{1 - \cfrac{\sin a \sin b}{\cos a \cos b}}
\\[0.5ex]
&=\frac{\tan a +\tan b }{1 - \tan a \tan b}
\end{align*}\medskip
\begin{align*}
\frac{\sin(a+b)}{\cos(a+b)}&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\
\tan(a+b)&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\[0.5ex]
&=\frac{\mfrac{\sin a \cos b}{\cos a \cos b} + \mfrac{\cos a \sin b}{\cos a \cos b\vphantom{g}}}{\mfrac{\cos a \cos b}{\cos a \cos b} - \mfrac{\sin a \sin b}{\cos a \cos b}}
\\[0.5ex]
&=\frac{\mfrac{\sin a}{\cos a} + \mfrac{\sin b}{\cos b\vphantom{g}}}{1 - \mfrac{\sin a \sin b}{\cos a \cos b}}
\\[0.5ex]
&=\frac{\tan a +\tan b }{1 - \tan a \tan b}
\end{align*}
\end{document}
Respuesta2
Para remediar las \textstyle
ecuaciones pequeñas ( ), como dije en un comentario, suma \displaystyle
antes de la fracción pequeña, o (con amsmath
), usa \dfrac
. Sin embargo, eso no soluciona la estrecha brecha vertical entre ecuaciones realmente altas.
Con TABstack, la brecha entre ecuaciones se puede especificar fácilmente. Aquí, debido a que las ecuaciones no están numeradas y la altura de cada ecuación es diferente, elijo a \alignShortstack
en lugar de an.\alignCenterstack
\documentclass{article}
\usepackage{amsmath,tabstackengine}
\TABstackMath
\TABstackMathstyle{\displaystyle}
\begin{document}
\[
\setstackgap{S}{16pt}
\alignShortstack{
\frac{\sin(a+b)}{\cos(a+b)}&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\
\tan(a+b)&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}
\\
&=\frac{\dfrac{\sin a \cos b}{\cos a \cos b} + \dfrac{\cos a \sin b}{\cos a \cos b}}{\dfrac{\cos a \cos b}{\cos a \cos b} - \dfrac{\sin a \sin b}{\cos a \cos b}}
\\
&=\frac{\dfrac{\sin a}{\cos a} + \dfrac{\sin b}{\cos b}}{1 - \dfrac{\sin a \sin b}{\cos a \cos b}}
\\
&=\frac{\tan a +\tan b }{1 - \tan a \tan b}}
\]
\end{document}
Respuesta3
con el uso de amsmath
manuales se aumentó la distancia vertical entre las líneas de las ecuaciones matemáticas:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align*}
\frac{\sin(a+b)}{\cos(a+b)}
&=\frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b} \\
\tan(a+b)
&=\frac{\sin a \cos b + \cos a \sin b\mathstrut}{\cos a \cos b - \sin a \sin b} \\[1ex]
&=\frac{\dfrac{\sin a \cos b}{\cos a \cos b\mathstrut} + \dfrac{\cos a \sin b}{\cos a \cos b}}
{\dfrac{\cos a \cos b}{\cos a \cos b} - \dfrac{\sin a \sin b}{\cos a \cos b}}\\[1ex]
&=\frac{\dfrac{\sin a}{\cos a} + \dfrac{\sin b\mathstrut}{\cos b}}
{1 - \dfrac{\sin a \sin b}{\cos a \cos b}} \\[1ex]
&=\frac{\tan a +\tan b }{1 - \tan a \tan b}
\end{align*}
\end{document}
editar:Ahora se considera comentario de Barbara Beeton.