Considere el siguiente problema: imagine que elige 3 cuadrados de un campo de 3x3. Entonces puedes tener una línea hacia arriba o hacia abajo, dos cuadrados hacia abajo y uno a la derecha, etc. Así que numeremos cada cuadrado (ver MWE
). Ahora es sólo un problema matemático: $binom(9,3)$
.
Pero como todos los cuadrados parecen iguales, no hay diferencia entre (1,2,3)
y (3,2,1)
así sucesivamente. Así que cuando echamos un vistazoaquíEs una solución bastante buena, pero tenemos el problema con los duplicados.
Pensé en escribir un script en Python que exporte las permutaciones correctas a un .csv
archivo y luego TikZ
o pgfplots
(tal vez también se pueda hacer allí) pueda leer el archivo y resolver el "problema del cuadrado".
Entonces mi pregunta es: ¿Cómo puedo "tachar" los duplicados para obtener algo? como en el MWE
?
\documentclass[border=5pt,tikz]{standalone}
\newcommand{\setcircle}[3]{
\pgfmathsetmacro\testnum{int(mod(#1,3))}
\ifnum\testnum=0
\pgfmathsetmacro\oxpos{3}
\pgfmathsetmacro\oypos{floor(#1/3)-1}
\else
\pgfmathsetmacro\oxpos{mod(#1,3)}
\pgfmathsetmacro\oypos{floor(#1/3)}
\fi
\pgfmathsetmacro\testnum{int(mod(#2,3))}
\ifnum\testnum=0
\pgfmathsetmacro\txpos{3}
\pgfmathsetmacro\typos{floor(#2/3)-1}
\else
\pgfmathsetmacro\txpos{mod(#2,3)}
\pgfmathsetmacro\typos{floor(#2/3)}
\fi
\pgfmathsetmacro\testnum{int(mod(#3,3))}
\ifnum\testnum=0
\pgfmathsetmacro\thxpos{3}
\pgfmathsetmacro\thypos{floor(#3/3)-1}
\else
\pgfmathsetmacro\thxpos{mod(#3,3)}
\pgfmathsetmacro\thypos{floor(#3/3)}
\fi
\draw (\oxpos,-\oypos) circle(.5) node {#1};
\draw (\txpos,-\typos) circle(.5) node {#2};
\draw (\thxpos,-\thypos) circle(.5) node {#3};
}
\begin{document}
\begin{tikzpicture}
\foreach \x in {1,...,9}
{
\pgfmathsetmacro\testnum{int(mod(\x,3))}
\ifnum\testnum=0
\pgfmathsetmacro\xpos{3}
\pgfmathsetmacro\ypos{floor(\x/3)-1}
\else
\pgfmathsetmacro\xpos{mod(\x,3)}
\pgfmathsetmacro\ypos{floor(\x/3)}
\fi
\draw (\xpos,-\ypos) circle(.5) node {\x};
}
\begin{scope}[xshift=-3cm,yshift=-4cm]
\setcircle{1}{2}{5}
\end{scope}
\begin{scope}[yshift=-4cm]
\setcircle{1}{2}{3}
\end{scope}
\begin{scope}[xshift=3cm,yshift=-4cm]
\setcircle{3}{6}{8}
\end{scope}
\end{tikzpicture}
\end{document}
Producción:
Respuesta1
Esto dibuja todas las combinaciones no equivalentes.
\documentclass[tikz,border=3.14mm]{standalone}
\newcounter{mystep}
\begin{document}
\begin{tikzpicture}[insert circle/.style={insert path={%
({mod(#1-1,3)*0.75},{int((#1-1)/3)*0.75}) node[circle,draw]{#1}}}]
\foreach \X [evaluate=\X as \Ymin using {int(\X+1)}] in {1,...,9}
{\foreach \Y [evaluate=\Y as \Zmin using {int(\X+1)}]in {\Ymin,...,9}
{\foreach \Z in {\Zmin,...,9}
{\ifnum\X<\Y
\ifnum\Y<\Z
\stepcounter{mystep}
\begin{scope}[xshift={mod(\number\value{mystep}-1,7)*3cm},
yshift={-int((\number\value{mystep}-1)/7)*3cm}]
\path[insert circle/.list={\X,\Y,\Z}];
\end{scope}
\fi
\fi
}}}
\typeout{\number\value{mystep}\space combinations}
\end{tikzpicture}
\end{document}