El área de una región delimitada por dos gráficas

El área de una región delimitada por dos gráficas

Estoy buscando un programa más profesional que el de aquí abajo. Creo que puedo nombrar las curvas y hacer que TiKz calcule los puntos de intersección en lugar de encontrarlos con lápiz y papel. Confieso haber dedicado una buena hora a esta construcción. Perdón por la redundancia o el exceso de comentarios.

\documentclass{article}
\usepackage{tikz}

\begin{document}
\begin{minipage}{.3\textwidth}
\begin{center}
\begin{tikzpicture}[scale=.5,declare function={g(\x)=(\x-1)^(2)+1;},declare 
        function={f(\x)=.5*\x+4;}]
\draw[fill=orange!40!white,dashed]
  plot[domain=-.6375:3.137,samples=167,variable=\x] ({\x},{f(\x)})
    -- (3.137,-2) -| cycle;
 \draw[fill=white,dashed]
   plot[domain=-.6375:3.137,samples=167,variable=\x] ({\x},{g(\x)})
    -- (3.137,-2) -| cycle; 
 \draw[domain=-1:3.8,smooth,variable=\x,red,<->,thick] plot ({\x},{g(\x)});
 \draw[domain=-1.4:4.4,smooth,variable=\x,blue,<->,thick] plot ({\x}, 
   {f(\x)});
 \draw[fill] (-.6375,{g(-.6375)}) circle (4pt);
 \draw[fill] (-.6375,-2) circle (4pt);
 \draw[fill] (3.137,{g(3.137)}) circle (4pt);
 \draw[fill] (3.137,-2) circle (4pt);
 %\draw[domain=-3:-1,smooth,variable=\x,red,<-,thick] plot ({\x},{g(\x)});
 \draw[dashed] (-.6375,{g(-.6375)})--(-.6375,-2) node[below] {$a$};
 \draw[dashed] (3.137,{g(3.137)})--(3.137,-2) node[below] {$b$};
 \draw (-2.25,-2)--(5,-2);
 \node at (3.8,{g(3.8)}) [right,text=red] {$g$};
 \node at (4.4,{f(4.4)}) [right,text=blue] {$f$};
 \node at (1,3) [] {$A$};           
 \end{tikzpicture}
 \end{center}
 \end{minipage}
 \hspace{1cm}
 \begin{minipage}{.3\textwidth}
 \begin{center}
 \begin{tikzpicture}[scale=.5,declare function={g(\x)=(\x-1)^(2)+1;},declare 
    function={f(\x)=.5*\x+4;}]
 \draw[fill=orange!40!white]
    plot[domain=-.6375:3.137,samples=167,variable=\x] ({\x},{f(\x)})
    -- (3.137,-2) -| cycle;
 %\draw[fill=white,dashed]
 %   plot[domain=-.6375:3.137,samples=167,variable=\x] ({\x},{g(\x)})
 %   -- (3.137,-2) -| cycle;    
 %\draw[domain=-1:3.8,smooth,variable=\x,red,<->,thick] plot ({\x},{g(\x)});
 \draw[domain=-1.4:4.4,smooth,variable=\x,blue,<->,thick] plot ({\x}, 
   {f(\x)});
 \draw[fill] (-.6375,{g(-.6375)}) circle (4pt);
 \draw[fill] (-.6375,-2) circle (4pt);
 \draw[fill] (3.137,{g(3.137)}) circle (4pt);
 \draw[fill] (3.137,-2) circle (4pt);
 %\draw[domain=-3:-1,smooth,variable=\x,red,<-,thick] plot ({\x},{g(\x)});
 \draw[] (-.6375,{g(-.6375)})--(-.6375,-2) node[below] {$a$};
 \draw[] (3.137,{g(3.137)})--(3.137,-2) node[below] {$b$};
 \draw (-2.25,-2)--(5,-2);
 \node at (3.8,{g(3.8)}) [right,text=white] {$g$};
 \node at (4.4,{f(4.4)}) [right,text=blue] {$f$};
 \node at (1,1) [] {$A_{2}$};           
 \end{tikzpicture}
 \end{center}
 \end{minipage}
 \hspace{1cm}
 \begin{minipage}{.3\textwidth}
 \begin{center}
 \begin{tikzpicture}[scale=.5,declare function={g(\x)=(\x-1)^(2)+1;},declare 
   function={f(\x)=.5*\x+4;}]
   %\draw[fill=white]
   %   plot[domain=-.6375:3.137,samples=167,variable=\x] ({\x},{f(\x)})
   %   -- (3.137,-2) -| cycle;
 \draw[fill=orange!40!white,dashed]
    plot[domain=-.6375:3.137,samples=167,variable=\x] ({\x},{g(\x)})
    -- (3.137,-2) -| cycle; 
  \draw[domain=-1:3.8,smooth,variable=\x,red,<->,thick] plot ({\x},{g(\x)});
  %\draw[domain=-1.4:4.4,smooth,variable=\x,blue,<->,thick] plot ({\x}, 
   {f(\x)});
 \draw[fill] (-.6375,{g(-.6375)}) circle (4pt);
 \draw[fill] (-.6375,-2) circle (4pt);
 \draw[fill] (3.137,{g(3.137)}) circle (4pt);
 \draw[fill] (3.137,-2) circle (4pt);
 %\draw[domain=-3:-1,smooth,variable=\x,red,<-,thick] plot ({\x},{g(\x)});
 \draw[] (-.6375,{g(-.6375)})--(-.6375,-2) node[below] {$a$};
 \draw[] (3.137,{g(3.137)})--(3.137,-2) node[below] {$b$};
 \draw (-2.25,-2)--(5,-2);
 \node at (3.8,{g(3.8)}) [right,text=red] {$g$};
 %\node at (4.4,{f(4.4)}) [right,text=] {$f$};
 \node at (1,1) [below] {$A_{1}$};          
 \end{tikzpicture}
 \end{center}
 \end{minipage}

\end{document}

Esto produce:

ingrese la descripción de la imagen aquí

Respuesta1

Esta es una propuesta que carga y usa la pgfplotsbiblioteca fillbetweenpero solo tiene TikSintaxis Z. No es necesario calcular ninguna intersección a mano.

ingrese la descripción de la imagen aquí

\documentclass{article}
\usepackage{tikz}
\usepackage{pgfplots}
\pgfplotsset{compat=1.16}
\usepgfplotslibrary{fillbetween}
\usetikzlibrary{backgrounds}
\begin{document}
\begin{minipage}{.3\textwidth}
\centering
\begin{tikzpicture}[scale=.5,declare function={g(\x)=(\x-1)^(2)+1;
        f(\x)=.5*\x+4;}]
 \draw[domain=-1.4:4.4,smooth,variable=\x,blue,<->,thick,name path=f1] plot ({\x}, 
   {f(\x)});
 \draw[domain=-1:3.8,smooth,variable=\x,red,<->,thick,name path=g1] plot ({\x},{g(\x)});
 \begin{scope}[on background layer]  
  \path[fill=orange!40!white,%blue,very thick,
   intersection segments={of=f1 and g1,sequence={A1 -- B1[reverse]}}]; 
 \end{scope} 
 \draw[fill,name intersections={of=f1 and g1,name=I1}] 
  (I1-1) circle (4pt) (I1-2) circle (4pt)
  (I1-1|-0,-2) circle (4pt) (I1-2|-0,-2) circle (4pt);
 \draw[dashed] (I1-1)--(I1-1|-0,-2) node[below] {$\mathstrut a$};
 \draw[dashed] (I1-2)--(I1-2|-0,-2) node[below] {$\mathstrut b$};
 \draw (-2.25,-2)--(5,-2);
 \node at (3.8,{g(3.8)}) [right,text=red] {$g$};
 \node at (4.4,{f(4.4)}) [right,text=blue] {$f$};
 \node at (1,3)  {$A$};           
 \end{tikzpicture}
\end{minipage}
\hspace{1cm}
\begin{minipage}{.3\textwidth}
\centering
\begin{tikzpicture}[scale=.5,declare function={g(\x)=(\x-1)^(2)+1;
        f(\x)=.5*\x+4;}]
 \draw[domain=-1.4:4.4,smooth,variable=\x,blue,<->,thick,name path=f2] plot ({\x}, 
   {f(\x)});
 \path[domain=-1:3.8,smooth,variable=\x,<->,name path=g2] plot ({\x},{g(\x)});
 \draw[fill,name intersections={of=f2 and g2,name=I2}] 
  (I2-1) circle (4pt) (I2-2) circle (4pt)
  (I2-1|-0,-2) circle (4pt) (I2-2|-0,-2) circle (4pt);
 \begin{scope}[on background layer]  
  \path[fill=orange!40!white]
  (I2-1|-0,-2) -- (I2-1) -- (I2-2) -- (I2-2|-0,-2); 
 \end{scope} 
 \draw (I2-1)--(I2-1|-0,-2) node[below] {$\mathstrut a$};
 \draw (I2-2)--(I2-2|-0,-2) node[below] {$\mathstrut b$};
 \draw (-2.25,-2)--(5,-2);
 \node at (3.8,{g(3.8)}) [right,text=white] {$g$};
 \node at (4.4,{f(4.4)}) [right,text=blue] {$f$};
 \node at (1,1) [] {$A_{2}$};           
 \end{tikzpicture}
\end{minipage}
\hspace{1cm}
\begin{minipage}{.3\textwidth}
\centering
 \begin{tikzpicture}[scale=.5,declare function={g(\x)=(\x-1)^(2)+1;
        f(\x)=.5*\x+4;}]
 \path[domain=-1.4:4.4,smooth,variable=\x,name path=f3] plot ({\x}, 
   {f(\x)});
 \draw[domain=-1:3.8,smooth,variable=\x,red,<->,thick,name path=g3] plot ({\x},{g(\x)});
 \draw[fill,name intersections={of=f3 and g3,name=I3}] 
  (I3-1) circle (4pt) (I3-2) circle (4pt)
  (I3-1|-0,-2) circle (4pt) (I3-2|-0,-2) circle (4pt);
 \path[name path=aux] (I3-1) -- (I3-1|-0,-2) -- (I3-2|-0,-2) -- (I3-2) -- cycle;
 \begin{scope}[on background layer]  
  \path[fill=orange!40!white,%blue,very thick,
   intersection segments={of=aux and g3,sequence={A0[reverse] -- B1}}]; 
 \end{scope} 
 \draw (I3-1)--(I3-1|-0,-2) node[below] {$\mathstrut a$};
 \draw (I3-2)--(I3-2|-0,-2) node[below] {$\mathstrut b$};
 \draw (-2.25,-2)--(5,-2);
 \node at (3.8,{g(3.8)}) [right,text=red] {$g$};
 \node at (1,1) [below] {$A_{1}$};          
\end{tikzpicture}
\end{minipage}
\end{document}

información relacionada