¿Cómo alinear un conjunto de ecuaciones múltiples sobre un conjunto de ecuaciones múltiples alineadas?

¿Cómo alinear un conjunto de ecuaciones múltiples sobre un conjunto de ecuaciones múltiples alineadas?

Con un conjunto de múltiples ecuaciones alineadas se desalinean de la siguiente manera:

\begin{equation*}
DGE
\left \{
\begin{aligned}
& FEGE & & &
\left \{
\begin{aligned}
& & CGE & &
\left \{
\begin{aligned}
& & & EP &
\left \{
\begin{aligned}
&&&& x_{ij, \> t} = \frac{Y_{i, \> t} \, E_{j, \> t}}{Y_t} \, \left ( \frac{t_{ij, \> t}}{\prod_{i, \> t} \, P_{j, \> t}} \right )^{1 - \sigma}
\end{aligned}
\right. \\
&&&& \Pi^{1 - \sigma}_{i, \> t} = \sum_j \left ( \frac{t_{ij, \> t}}{P_{j, \> t}} \right )^{1 - \sigma} \, \frac{E_{j, \> t}}{Y_t} \\
&&&& P^{1 - \sigma}_{j, \> t} = \sum_i \left ( \frac{t_{ij, \> t}}{\Pi_{i, \> t}} \right )^{1 - \sigma} \, \frac{Y_{i, \> t}}{Y_t} 
\end{aligned}
\right. \\
&&&&  p_{i, \> t} = \left ( \frac{Y_{i, \> t}}{Y_t} \right )^{\frac{1}{1 - \sigma}} \, \frac{1}{\alpha_i \, \Pi_{i, \> t}} \\
&&&& Y_{i, \> t} = p_{i, \> t} \, A_{i, \> t} \, L^{1 - \eta}_{i, \> t} \, K^{\eta}_{i, \> t} \\
&&&& E_{i, \> t} = \varphi_{i} \, Y_{i, \> t}
\end{aligned}
\right. \\
&&&& K_{i, \> t \; + \; 1} = \left [ \gamma \, \delta \, \varphi_{i, \> t} \, \frac{\eta \, p_{i, \> t} \, A_{i, \> t} \, L^{1 - \eta}_{i, \> t} \, K^{\eta - 1}_{i, \> t}}{(1 - \gamma \; + \; \delta \gamma) \, P_{i, \> t}} \right]^{\delta} \, K_{i, \> t}
\end{aligned}
\right.
\end{equation*}

ingrese la descripción de la imagen aquí

Sin embargo, me gustaría obtener una alineación igual cuando uso eqnarray, de la siguiente manera:

\begin{eqnarray*}
x_{ij, \> t} & = & \frac{Y_{i, \> t} \, E_{j, \> t}}{Y_t} \, \left ( \frac{t_{ij, \> t}}{\prod_{i, \> t} \, P_{j, \> t}} \right )^{1 - \sigma} \\
\Pi^{1 - \sigma}_{i, \> t} & = & \sum_j \left ( \frac{t_{ij, \> t}}{P_{j, \> t}} \right )^{1 - \sigma} \, \frac{E_{j, \> t}}{Y_t} \\
P^{1 - \sigma}_{j, \> t} & = & \sum_i \left ( \frac{t_{ij, \> t}}{\Pi_{i, \> t}} \right )^{1 - \sigma} \, \frac{Y_{i, \> t}}{Y_t} \\
p_{i, \> t} & = & \left ( \frac{Y_{i, \> t}}{Y_t} \right )^{\frac{1}{1 - \sigma}} \, \frac{1}{\alpha_i \, \Pi_{i, \> t}} \\
Y_{i, \> t} & = & p_{i, \> t} \, A_{i, \> t} \, L^{1 - \eta}_{i, \> t} \, K^{\eta}_{i, \> t} \\
E_{i, \> t} & = & \varphi_{i} \, Y_{i, \> t} \\
K_{i, \> t \; + \; 1} & = & \left [ \gamma \, \delta \, \varphi_{i, \> t} \, \frac{\eta \, p_{i, \> t} \, A_{i, \> t} \, L^{1 - \eta}_{i, \> t} \, K^{\eta - 1}_{i, \> t}}{(1 - \gamma \; + \; \delta \gamma) \, P_{i, \> t}} \right]^{\delta} \, K_{i, \> t}
\end{eqnarray*}

ingrese la descripción de la imagen aquí

Respuesta1

Aquí hay una forma, más o menos un truco con bigdelim, an arrayy mathtools:

\documentclass[a4paper,12pt]{article}
\usepackage{array}
\usepackage{bigdelim}
\usepackage{mathtools} 

\begin{document}

\[ \begin{array}{r@{}r @{} >{\displaystyle{}}l@{}}
\ldelim\{{13.7}{*}[$ DGE $ ]\ldelim\{{10.8}{*}[\enspace$ FEGE $ ]\ldelim\{{6.5}{*}[\enspace$ CGE $ ] \ldelim\{{1.6}{*}[\enspace$ EP $ ] & x_{ij, \> t} & = \frac{Y_{i, \> t} \, E_{j, \> t}}{Y_t} \, \left ( \frac{t_{ij, \> t}}{\prod_{i, \> t} \, P_{j, \> t}} \right )^{1 - \sigma} \\
 & \Pi^{1 - \sigma}_{i, \> t} & = \sum_j \left ( \frac{t_{ij, \> t}}{P_{j, \> t}} \right )^{1 - \sigma} \, \frac{E_{j, \> t}}{Y_t} \\
 & P^{1 - \sigma}_{j, \> t} & = \sum_i \left ( \frac{t_{ij, \> t}}{\Pi_{i, \> t}} \right )^{1 - \sigma} \, \frac{Y_{i, \> t}}{Y_t} \\
 & p_{i, \> t} & = \left ( \frac{Y_{i, \> t}}{Y_t} \right )^{\frac{1}{1 - \sigma}} \, \frac{1}{\alpha_i \, \Pi_{i, \> t}} \\
  & Y_{i, \> t} & = p_{i, \> t} \, A_{i, \> t} \, L^{1 - \eta}_{i, \> t} \, K^{\eta}_{i, \> t} \\
   & E_{i, \> t} & = \varphi_{i} \, Y_{i, \> t} \\
   &\mathllap{ K_{i, \> t \; + \; 1}} & = \left [ \gamma \, \delta \, \varphi_{i, \> t} \, \frac{\eta \, p_{i, \> t} \, A_{i, \> t} \, L^{1 - \eta}_{i, \> t} \, K^{\eta - 1}_{i, \> t}}{(1 - \gamma \; + \; \delta \gamma) \, P_{i, \> t}} \right]^{\delta} \, K_{i, \> t}
\end{array} \]

\end{document} 

ingrese la descripción de la imagen aquí

Respuesta2

Con uso del nicematrixpaquete:

\documentclass{article}
\usepackage{nicematrix}
\usetikzlibrary{decorations.pathreplacing,
                calligraphy}
\tikzset{
B/.style = {decorate,
            decoration={calligraphic brace, amplitude=3pt,
            raise=1pt, mirror},% for mirroring of brace
            thick},
        }

\begin{document}
    \[\setlength\arraycolsep{1pt}
      \renewcommand\arraystretch{2}  
      \def\X{\hphantom{XX}}
      \def\XX{\hphantom{XXXX}}
\begin{NiceArray}{C
                  @{\hspace{4em}}C
                  @{\hspace{3em}}C
                  @{\hspace{2em}}C
                  RCL}%
    [code-after={
        \tikz\draw[B] (1-4.west |- 1-7.north) -- node[left=1mm] {EP}   (1-4.west |- 1-7.south);
        \tikz\draw[B] (1-3.west |- 1-7.north) -- node[left=1mm] {CGE}  (3-3.west |- 2-7.south);
        \tikz\draw[B] (1-2.west |- 1-7.north) -- node[left=1mm] {FEGE} (6-2.west |- 6-7.south);
        \tikz\draw[B] (1-1.west |- 1-7.north) -- node[left=1mm] {DGE}  (7-1.west |- 7-7.south);
                }
    ]
&&&&
    x_{ij,t} & = & \frac{Y_{i,t} E_{j,t}}{Y_t} \Bigl(\frac{t_{ij,t}}
                                                          {\prod_{i,t} P_{j,t}} \Bigr)^{1 - \sigma} \\
&&&&
    \Pi^{1-\sigma}_{i,t} & = & \sum_j \Bigl(\frac{t_{ij,t}}
                                                 {P_{j,t}} \Bigr)^{1-\sigma} \frac{E_{j,t}}{Y_t} \\
&&&&
    P^{1-\sigma}_{j,t} & = & \sum_i \Bigl(\frac{t_{ij,t}}
                                               {\Pi_{i,t}} \bigr)^{1-\sigma} \frac{Y_{i,t}}{Y_t} \\
&&&&
    p_{i,t} & = & \Bigl(\frac{Y_{i,t}}{Y_t} \Bigr)^{\frac{1}
                                                          {1 - \sigma}} \frac{1}
                                                                             {\alpha_i \Pi_{i,t}} \\
&&&&
    Y_{i,t} & = & p_{i,t} A_{i,t} L^{1 - \eta}_{i,t} K^{\eta}_{i,t} \\
&&&&
    E_{i,t} & = & \varphi_{i} Y_{i,t} \\
&&&&
    K_{i,t+1} & = & \Bigl[\gamma\delta\varphi_{i,t}
        \frac{\eta p_{i,t} A_{i, t} L^{1-\eta}_{i,t} K^{\eta-1}_{i,t}}
             {(1 - \gamma + \delta\gamma) P_{i,t}} \Bigr]^{\delta} K_{i,t}
\end{NiceArray}
    \]
\end{document}

Después de dos compilaciones el resultado es:

ingrese la descripción de la imagen aquí

información relacionada