
He dibujado el siguiente diagrama de flujo bajo la clase de documento "independiente", pero el documento original en el que se va a fusionar es de clase de documento "artículo". Entonces, cuando pego el código en mi documento principal, el diagrama de flujo se reduce y se vuelve demasiado pequeño en comparación con el diagrama original. Quiero que el diagrama de flujo ocupe una página completa de tamaño A4.
\documentclass[border=10pt]{standalone}
\usepackage{amsmath}
\usepackage{anyfontsize}
\usepackage{tikz}
\usetikzlibrary{arrows,positioning,shapes.geometric}
\begin{document}
\begin{tikzpicture}[>=latex']
\tikzset{block/.style= {draw, rectangle, align=center,minimum width=3.3cm,minimum height=.1cm},
}
\node [block,text width=2cm] (start) {\fontsize{3}{6}\selectfont Feynman Integral};
\node [block,text width=2cm, below = .2cm of start] (Z1){\fontsize{3}{6}\selectfont Schwinger Parametrization};
\node [coordinate, below = .3cm of Z1] (ADL){};
\node [coordinate, left = 2cm of ADL] (AUL){};
\node [coordinate, below = .3cm of Z1] (BUL){};
\node [coordinate, right = 2cm of BUL] (BDL){};
\node [block,text width=2cm, below = .2cm of AUL] (A1){{\fontsize{2.4}{3}\selectfont Original Method of Brackets}};
\node [block,text width=2cm, below = .2cm of BDL] (A2){{\fontsize{2.4}{3}\selectfont Modified Method of Brackets}};
\node [block,text width=2.5cm, below = .2cm of A1,align=center] (B1){{\fontsize{2.4}{6}\selectfont \textbf{Rule 1}: Expanding exponentials \\
\(e^{-A} = \sum_{n=0}^{\infty}\frac{(-1)^n A^n}{\Gamma(1+n)}\)}};
\node [block,text width=2.6cm, below = .2cm of A2] (B2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 1}: Expanding Exponentials\\
\(e^{-A} = \oint \frac{dx}{2 \pi i} A^{-z}\Gamma(-z)\)}};
\node [block,text width=2cm, below= .2cm of B2] (C2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 2}: Expanding Multinomials
\begin{align*}
(a_1 + a_2 +...+ a_r)^{\alpha}= \oint\frac{dz_1}{2 \pi i}...\oint\frac{dz_r}{2 \pi i} a_{1}^{z_1}...a_{r}^{z_r}\\\langle -\alpha+z_1+...+z_r\rangle\frac{\Gamma(-z_1)...\Gamma(-z_2)}{\Gamma(-\alpha)}
\end{align*}}};
\node [block,text width=2.5cm, below = .2cm of B1] (C1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 2}: Expanding Multinomials
\begin{align*}
(a_1 + a_2 +...+ a_r)^{\alpha}= \sum_{m_1,...,m_r} \phi_{m_1,...,m_r} \\a_{1}^{m_1}...a_{r}^{m_r}\frac{\langle -\alpha+m_1+...+m_r\rangle}{\Gamma(-\alpha)}
\end{align*}}};
\node [block,text width=2cm, below = .2cm of C1] (D1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 3}: Introduce Bracket
\begin{align*}
\int_{0}^{\infty}x^{l-1}= \langle l\rangle
\end{align*}}};
\node [block,text width=2cm, below = .2cm of C2] (D2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 3}: Introduce Bracket
\begin{align*}
\int_{0}^{\infty}x^{l-1}= \langle l\rangle
\end{align*}}};
\node [block,text width=2.5cm, below = .2cm of D1] (E1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 4}: Eliminate Bracket\\
\vspace{.3cm}An expression of the form
\begin{align*}
\sum_{n_1,...,n_r}\phi_{1,...,r}f(n_1,...,n_r)\langle a_{11}n_{1}+...+a_{1r}n_{r}+c{1}\rangle\\\times \langle a_{s1}n_{1}+...+a_{sr}n_{r}+c{1}\rangle
\end{align*}
as\(\frac{1}{|detA|}f(n_{1}^{*},...,n_{r}^{*})\Gamma(-n_{1}^{*})...\Gamma(-n_{r}^{*})\)}};
\node [block,text width=2.5cm, below = .2cm of D2] (E2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 4}: Eliminate Bracket-\\
\vspace{.3cm}An expression of the form
\begin{align*}
\oint\frac{dz_{1}}{2\pi i}...\oint\frac{dz_{1}}{2\pi i}f(z_{1},...,z_{r})\langle a_{s1}z_{1}+...+a_{sr}z_{r}+c{1}\rangle\\\times \langle a_{s1}z_{1}+...+a_{sr}z_{r}+c{1}\rangle
\end{align*}
as \(\frac{1}{|detA|}f(z_{1}^{*},...,z_{r}^{*})\)}};
\path[draw, ->]
(start)edge(Z1)
(Z1)--(ADL)
(ADL)--(AUL)
(AUL)edge(A1)
(A1) edge (B1)
(B1)edge(C1)
(C1)edge(D1)
(D1)edge(E1)
(Z1)--(BUL)
(BUL)--(BDL)
(BDL)edge(A2)
(A2) edge (B2)
(B2)edge(C2)
(C2)--(D2)
(D2)edge(E2)
;
\end{tikzpicture}
\end{document}
Respuesta1
Para convertir standalone
la clase de documento a article
solo necesita reemplazar standalone
con article
. Esa imagen se centrará en la página y la encerrará en \begin{center}
... \end{center}
o la pondrá en figure
un entorno flotante:
\documentclass]{article}
\usepackage{amsmath}
\usepackage{anyfontsize}
\usepackage{tikz}
\usetikzlibrary{arrows,positioning,shapes.geometric}
\begin{document}
\begin{figure}[ht]
\centering
% < your image code>
\end{figure}
\end{document}
Sin embargo, su diagrama se puede dibujar como un árbol. Usando el forest
paquete para ello y considerando mathtools
para mathclap
macro y nccmath
fracciones de tamaño mediano ( \mfrac
), es posible usar un tamaño de fuente más grande en los nodos ( \scriptsize
) y tener un código más corto y claro:
\documentclass{article}
\usepackage{mathtools, nccmath}
\usepackage[edges]{forest}
\usetikzlibrary{arrows.meta}
%---------------- show page layout. don't use in a real document!
\usepackage{showframe}
\renewcommand\ShowFrameLinethickness{0.15pt}
\renewcommand*\ShowFrameColor{\color{red}}
\begin{document}
\begin{center} % or use \begin{figure}[ht]\centering
\setlength\abovedisplayskip{2pt}%
\begin{forest}
for tree = {
draw,
text width=54mm,
font=\scriptsize,
%
grow = south,
forked edge,
s sep = 6mm,
l sep = 4mm,
fork sep = 2mm,
if level<= 2{text centered}{},
tier/.option = level, % for aligning nodes to levels
%
edge = {-{Stealth[length=3pt]}, semithick},
}
[Feynman Integra
[Schwinger Parametrization
%%%% left branch
[Original Method of Brackets
[\textbf{Rule 1}: Expanding exponentials
\[{e^{-A} = \sum_{n=0}^{\infty}\mfrac{(-1)^n A^n}{\Gamma(1+n)}}\]
[\textbf{Rule 2}: Expanding Multinomials
{\begin{multline*}
(a_1 + a_2 +\dotsm+ a_r)^{\alpha}= \\
\sum_{\mathclap{m_1,\dotsc,m_r}} \phi_{m_1,\dotsc,m_r}
a_{1}^{m_1}\dotsm a_{r}^{m_r}\\
\mfrac{\langle -\alpha+m_1+\dotsm+m_r\rangle}{\Gamma(-\alpha)}
\end{multline*}}
[\textbf{Rule 3}: Introduce Bracket
\[ {\int_{0}^{\infty}x^{l-1}= \langle l\rangle} \]
[\textbf{Rule 4}: Eliminate Bracket\\
An expression of the form
{\begin{multline*}
\sum_{\mathclap{n_1,\dotsc,n_r}}\phi_{1,\dotsc,r}f(n_1,\dotsc.,n_r)\\
\langle a_{11}n_{1}+\dotsm+a_{1r}n_{r}+c{1}\rangle\\
\times \langle a_{s1}n_{1}+\dotsm+a_{sr}n_{r}+c{1}\rangle
\end{multline*}}
as {$\mfrac{1}{|detA|}f(n_{1}^{*},\dotsc,n_{r}^{*}) \Gamma(-n_{1}^{*})\dotsm\Gamma(-n_{r}^{*})$}
]
]
]
]
]
[Original Method of Brackets
[\textbf{Rule 1}: Expanding Exponentials
{\begin{multline*}
(a_1 + a_2 +\dotsm+ a_r)^{\alpha}\\
= \oint\frac{dz_1}{2 \pi i}\dotsm\oint\frac{dz_r}{2\pi i} a_{1}^{z_1}\dotsm a_{r}^{z_r} \\
\langle - \alpha+z_1 + \dotsm +z_r\rangle\cdot
\frac{\Gamma(-z_1)\dotsm \Gamma(-z_2)}{\Gamma(-\alpha)}
\end{multline*}}
[\textbf{Rule 2}: Expanding Multinomials
{\begin{multline*}
(a_1 + a_2 +\dotsm + a_r)^{\alpha} = \\
\oint\frac{dz_1}{2 \pi i}\dots\oint\frac{dz_r}{2 \pi i} a_{1}^{z_1}...a_{r}^{z_r}\\
\langle -\alpha+z_1+\dotsm + z_r\rangle\frac{\Gamma(-z_1)\dotsm\Gamma(-z_2)}{\Gamma(-\alpha)}
\end{multline*}}
[\textbf{Rule 3}: Introduce Bracket
\[ {\int_{0}^{\infty}x^{l-1}= \langle l\rangle} \]
[\textbf{Rule 4}: Eliminate Bracket\\
An expression of the form
{\begin{multline*}
\sum_{\mathclap{n_1,\dotsc,n_r}}\phi_{1,\dotsc,r}f(n_1,\dotsc.,n_r)\\
\langle a_{11}n_{1}+\dotsm+a_{1r}n_{r}+c{1}\rangle\\
\times \langle a_{s1}n_{1}+\dotsm+a_{sr}n_{r}+c{1}\rangle
\end{multline*}}
as {$\mfrac{1}{|detA|}f(n_{1}^{*},\dotsc,n_{r}^{*}) \Gamma(-n_{1}^{*})\dotsm\Gamma(-n_{r}^{*})$}
]
]
]
]
]
]
]
\end{forest}
\end{center} % or use `\end{figure}
\end{document}
(las líneas rojas indican los bordes del texto)
Respuesta2
Su producción es en realidad muy pequeña. \scalebox{scale}{content}
le permite ajustar el tamaño de su diagrama.
\documentclass{article}
\usepackage[margin=2cm]{geometry}
\usepackage{amsmath}
\usepackage{anyfontsize}
\usepackage{tikz}
\usetikzlibrary{arrows,positioning,shapes.geometric}
\begin{document}
\begin{center}
\scalebox{2}{
\begin{tikzpicture}[>=latex']
\tikzset{block/.style= {draw, rectangle, align=center,minimum width=3.3cm,minimum height=.1cm},
}
\node [block,text width=2cm] (start) {\fontsize{3}{6}\selectfont Feynman Integral};
\node [block,text width=2cm, below = .2cm of start] (Z1){\fontsize{3}{6}\selectfont Schwinger Parametrization};
\node [coordinate, below = .3cm of Z1] (ADL){};
\node [coordinate, left = 2cm of ADL] (AUL){};
\node [coordinate, below = .3cm of Z1] (BUL){};
\node [coordinate, right = 2cm of BUL] (BDL){};
\node [block,text width=2cm, below = .2cm of AUL] (A1){{\fontsize{2.4}{3}\selectfont Original Method of Brackets}};
\node [block,text width=2cm, below = .2cm of BDL] (A2){{\fontsize{2.4}{3}\selectfont Modified Method of Brackets}};
\node [block,text width=2.5cm, below = .2cm of A1,align=center] (B1){{\fontsize{2.4}{6}\selectfont \textbf{Rule 1}: Expanding exponentials \\
\(e^{-A} = \sum_{n=0}^{\infty}\frac{(-1)^n A^n}{\Gamma(1+n)}\)}};
\node [block,text width=2.6cm, below = .2cm of A2] (B2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 1}: Expanding Exponentials\\
\(e^{-A} = \oint \frac{dx}{2 \pi i} A^{-z}\Gamma(-z)\)}};
\node [block,text width=2cm, below= .2cm of B2] (C2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 2}: Expanding Multinomials
\begin{align*}
(a_1 + a_2 +...+ a_r)^{\alpha}= \oint\frac{dz_1}{2 \pi i}...\oint\frac{dz_r}{2 \pi i} a_{1}^{z_1}...a_{r}^{z_r}\\\langle -\alpha+z_1+...+z_r\rangle\frac{\Gamma(-z_1)...\Gamma(-z_2)}{\Gamma(-\alpha)}
\end{align*}}};
\node [block,text width=2.5cm, below = .2cm of B1] (C1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 2}: Expanding Multinomials
\begin{align*}
(a_1 + a_2 +...+ a_r)^{\alpha}= \sum_{m_1,...,m_r} \phi_{m_1,...,m_r} \\a_{1}^{m_1}...a_{r}^{m_r}\frac{\langle -\alpha+m_1+...+m_r\rangle}{\Gamma(-\alpha)}
\end{align*}}};
\node [block,text width=2cm, below = .2cm of C1] (D1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 3}: Introduce Bracket
\begin{align*}
\int_{0}^{\infty}x^{l-1}= \langle l\rangle
\end{align*}}};
\node [block,text width=2cm, below = .2cm of C2] (D2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 3}: Introduce Bracket
\begin{align*}
\int_{0}^{\infty}x^{l-1}= \langle l\rangle
\end{align*}}};
\node [block,text width=2.5cm, below = .2cm of D1] (E1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 4}: Eliminate Bracket\\
\vspace{.3cm}An expression of the form
\begin{align*}
\sum_{n_1,...,n_r}\phi_{1,...,r}f(n_1,...,n_r)\langle a_{11}n_{1}+...+a_{1r}n_{r}+c{1}\rangle\\\times \langle a_{s1}n_{1}+...+a_{sr}n_{r}+c{1}\rangle
\end{align*}
as\(\frac{1}{|detA|}f(n_{1}^{*},...,n_{r}^{*})\Gamma(-n_{1}^{*})...\Gamma(-n_{r}^{*})\)}};
\node [block,text width=2.5cm, below = .2cm of D2] (E2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 4}: Eliminate Bracket-\\
\vspace{.3cm}An expression of the form
\begin{align*}
\oint\frac{dz_{1}}{2\pi i}...\oint\frac{dz_{1}}{2\pi i}f(z_{1},...,z_{r})\langle a_{s1}z_{1}+...+a_{sr}z_{r}+c{1}\rangle\\\times \langle a_{s1}z_{1}+...+a_{sr}z_{r}+c{1}\rangle
\end{align*}
as \(\frac{1}{|detA|}f(z_{1}^{*},...,z_{r}^{*})\)}};
\path[draw, ->]
(start)edge(Z1)
(Z1)--(ADL)
(ADL)--(AUL)
(AUL)edge(A1)
(A1) edge (B1)
(B1)edge(C1)
(C1)edge(D1)
(D1)edge(E1)
(Z1)--(BUL)
(BUL)--(BDL)
(BDL)edge(A2)
(A2) edge (B2)
(B2)edge(C2)
(C2)--(D2)
(D2)edge(E2)
;
\end{tikzpicture}
}
\end{center}
\end{document}
Sin embargo, el tamaño de fuente que ha elegido todavía hace que las letras parezcan pequeñas. Considere utilizar un tamaño de fuente relativo (elcambiar el tamañoEl paquete es una opción decente).