
Tengo la sensación de que no puedo utilizar las columnas de forma correcta. A menudo tengo una diapositiva con dos tablas una al lado de la otra y se ve así:
El código del frame es este:
\begin{frame}{Nyttige regler for sett}
\begin{columns}
\begin{column}{0.25\textwidth}
\begin{tabular}{l|c}
Ekvivalens & Navn \\ \hline
$A \cap U = A$ & Identity\\
$A \cup \emptyset = A$ \\ \hline
$A \cup U = U$ & Domination\\
$A \cap \emptyset = \emptyset$\\ \hline
$A \cup A = A$ & Idempotent\\
$A \cap A = A$ \\ \hline
$A = (A^C)^C$ & Negation\\ \hline
$A \cup B = B \cup A$ & Commutative\\
$A \cap B = B \cap A$ \\
\end{tabular}
\end{column}
\begin{column}{0.58\textwidth}
\begin{tabular}{l|c}
Ekvivalens & Navn \\ \hline
$(A \cup B) \cup C = A \cup (B \cup C)$ & Associative\\
$(A \cap B) \cap C = A \cap (B \cap C)$ \\ \hline
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ & Distributive\\
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ \\ \hline
$(A \cap B)^C = A^C \cup B^C$ & De Morgan \\
$(A \cup B)^C = A^C \cap B^C$ \\ \hline
$A \cup (A \cap B) = A$ & Absorption \\
$A \cap (A \cup B) = A$ \\ \hline
$A \cup A^C = U$ & Negation \\
$A \cap A^C = \emptyset$ \\
\end{tabular}
\end{column}
\end{columns}
\end{frame}
Independientemente de cómo ajuste los parámetros de ancho, no se ve bien. O crecen uno hacia el otro o se dirigen hacia el borde derecho.
¿Hay alguna forma de solucionarlo? ¿Puedo alinear a la izquierda las tablas en una columna?
Respuesta1
Creo que el uso de column
entornos puede obstaculizar la búsqueda de tamaños adecuados para los tabular
entornos. Por supuesto, una vez que me deshice de la column
sobrecarga, fue cuestión de experimentar con tamaños de fuente relativos hasta que encontré \footnotesize
lo que se necesitaba, además de reducir el parámetro \tabcolsep
a 3 puntos (valor predeterminado: 6 puntos).
\documentclass{beamer}
\usepackage[norsk]{babel}
\usepackage{array}
\begin{document}
\begin{frame}[c]{Nyttige regler for sett}
\setlength{\tabcolsep}{3pt} % default value: 6pt
\footnotesize
\begin{tabular}[t]{@{}l|c@{}}
Ekvivalens & Navn \\ \hline
$A \cap U = A$ & Identity\\
$A \cup \emptyset = A$ \\ \hline
$A \cup U = U$ & Domination\\
$A \cap \emptyset = \emptyset$\\ \hline
$A \cup A = A$ & Idempotent\\
$A \cap A = A$ \\ \hline
$A = (A^C)^C$ & Negation\\ \hline
$A \cup B = B \cup A$ & Commutative\\
$A \cap B = B \cap A$ \\
\end{tabular}%
\hspace{\fill}
\begin{tabular}[t]{@{}l|c@{}}
Ekvivalens & Navn \\ \hline
$(A \cup B) \cup C = A \cup (B \cup C)$ & Associative\\
$(A \cap B) \cap C = A \cap (B \cap C)$ \\ \hline
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ & Distributive\\
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ \\ \hline
$(A \cap B)^C = A^C \cup B^C$ & De Morgan \\
$(A \cup B)^C = A^C \cap B^C$ \\ \hline
$A \cup (A \cap B) = A$ & Absorption \\
$A \cap (A \cup B) = A$ \\ \hline
$A \cup A^C = U$ & Negation \\
$A \cap A^C = \emptyset$ \\
\end{tabular}
\end{frame}
\end{document}