
¿Alguien sabe por qué el último elemento (y los elementos agregados después del día 7) no están alineados con los elementos anteriores? No entiendo...
\documentclass[12pt]{article}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[margin=0.5in]{geometry}
\title{Unit 1 Assessment, Part 2}
\date{May 2022}
\begin{document}
\maketitle
\begin{enumerate}
\item x - intercepts of the quadratic function $f(x)=-x^{2}+7x-6$ is at: \\
$0 = -x^{2} + 7x - 6 = (x - 1)(-x + 6) \\
x = 1,x = 6$ \\
The vertical asymptotes of the reciprocal function $g(x)=\frac{1}{-x^{2}+7x-6}$: \\
$x = 1,x = 6$ \\
\\
The horizontal asymptote of the reciprocal is y = 0 since all reciprocal functions have a horizontal asymptote at y = 0. \\
\\
The interval of increase of the quadratic function is $(-\infty,3.5)$, and the interval of decrease of the quadratic function is $(3.5,\infty)$. Therefore, the interval of decrease of the reciprocal function is $(-\infty,1)\cup(1,3.5)$, and the interval of increase of the reciprocal function is $(3.5,6)\cup(6,\infty)$.\\
\\
The quadratic function has a maximum point at x = 3.5, therefore the reciprocal has a minimum point at x = 3.5. \\
\\
The positive interval of the quadratic function is (1,6), and the negative interval of the quadratic function is $(-\infty,1)\cup(6,\infty)$. Therefore, the positive interval of the reciprocal function is (1,6), and the negative interval of the quadratic function is $(-\infty,1)\cup(6,\infty)$.\\
\begin{figure}[H]
\centering
\includegraphics[scale=0.5]{unit1part2a.png}
\caption{Graph: $f(x)=-x^{2}+7x-6$ \& $g(x)=\frac{1}{-x^{2}+7x-6}$.}
\end{figure}
\item \begin{enumerate}
\item $f(x) = \frac{-2x - 5}{3x + 18}$
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
Vertical asymptotes & Horizontal asymptotes & x - intercept & y - intercept & Domain \\
\hline
x = -6 & $y = -\frac{2}{3}$ & $(-\frac{5}{2},0)$ & $(0,-\frac{5}{18})$ & $D = \{x\in\mathbb{R}|x\neq-6\}$ \\
\hline
\end{tabular}
\end{center}
\begin{figure}[H]
\centering
\includegraphics[scale=0.5]{unit1part2b.png}
\caption{Graph: $f(x) = \frac{-2x - 5}{3x + 18}$.}
\end{figure}
\item Positive interval: $(-6,-2.5)$ \\
Negative intervals: $(-\infty,-6)\cup(-2.5,\infty)$
\end{enumerate}
\item Find the real roots of the following rational equations.
\begin{enumerate}
\item $\frac{-7x}{9x + 11} - 12 = \frac{1}{x} \\
\frac{-7x}{9x + 11} = \frac{1 + 12x}{x} \\
(-7x)(x) = (9x + 11)(1 + 12x) \\
-7x^2 = 9x + 108x^2 + 11 + 132x \\
115x^2 + 141x + 11 = 0 \\
x = \frac{-141\pm\sqrt{141^2 - (4)(115)(11)}}{(2)(115)} \\
x \approx -0.08,x \approx -1.14$
\item $\frac{x - 1}{x + 2} = \frac{3x + 8}{5x - 1} \\
(x - 1)(5x - 1) = (x + 2)(3x + 8) \\
5x^2 - x - 5x + 1 = 3x^2 + 8x + 6x + 16 \\
2x^2 - 20x - 15 = 0 \\
x = \frac{-(-20)\pm\sqrt{(-20)^2 - (4)(2)(-15)}}{(2)(2)} \\
x = \frac{10\pm\sqrt{130}}{2}$
\end{enumerate}
\item $8x - 3 \leq 2x+1 \leq 17x - 8 \\
8x - 3 \leq 2x+1 \\
6x \leq 4 \\
x \leq \frac{2}{3} \\
2x+1 \leq 17x - 8 \\
9 \leq 15x \\
x \geq \frac{3}{5} \\
\frac{3}{5} \leq x \leq \frac{2}{3}$
\item $\frac{5x + 4}{x - 11} < \frac{5x - 7}{x + 13} \\
\frac{5x + 4}{x - 11} - \frac{5x - 7}{x + 13} < 0 \\
\frac{(5x + 4)(x + 13) - (5x - 7)(x - 11)}{(x - 11)(x + 13)} < 0 \\
\frac{5x^2 + 65x + 4x + 52 - 5x^2 + 55x + 7x - 77}{(x - 11)(x + 13)} < 0 \\
\frac{121x - 25}{(x - 11)(x + 13)} < 0 \\
\text{Critical numbers:} \\
121x - 25 = 0 \\
x = \frac{25}{121} \\
x - 11 = 0 \\
x = 11 \\
x + 13 = 0 \\
x = -13$ \\
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Intervals & Test value x & 121x - 25 & x - 11 & x + 13 & $\frac{121x - 25}{(x - 11)(x + 13)}$ \\
\hline
$x < -13$ & -14 & - & - & - & - \\
\hline
$-13 < x < \frac{25}{121}$ & 0 & - & - & + & + \\
\hline
$ \frac{25}{121} < x < 11$ & 10 & + & - & + & - \\
\hline
$x > 11$ & 12 & + & + & + & + \\
\hline
\end{tabular} \\
\\
Therefore, the solution is $(-\infty,-13)\cup(\frac{25}{121},11)$.
\item $(3 + x)(5 + x)(7 + x) = 693 \\
(15 + 3x + 5x + x^2)(7 + x) = 693 \\
105 + 15x + 56x + 8x^2 + 7x^2 + x^3 - 693 = 0 \\
x^3 + 15x^2 + 71x - 588 = 0 \\
\because 4^3 + 15(4)^2 + 71(4) - 588 = 0 \\
\therefore x - 4$ is a factor. \\
Devide $x^3 + 15x^2 + 71x - 588$ by x - 4: \\
$(x - 4)(x^2 + 19x + 127) = 0 \\
\because 19^2 - (4)(1)(127) < 0 \\
\therefore x^2 + 19x + 127 = 0$ has no real solution. \\
When x - 4 = 0, x = 4 \\
The value of x is 4 will produce a box with a volume of 693 cm^3.
\item Let x represent the width in meters. \\
$(3x + 1)(2x - 5)x \geq 8436 \\
6x^3 - 13x^2 - 5x - 8436 \geq 0 \\
\because 6(12)^3 - 13(12)^2 - 5(12) - 8436 = 0 \\
\therefore x - 12$ is a factor. \\
Devide $6x^3 - 13x^2 - 5x - 8436$ by x - 12: \\
$(x - 12)(6x^2 + 59x + 703) \geq 0 $\\
Critical number: \\
$\because 59^2 - (4)(6)(703) < 0 \\
\therefore 6x^2 + 59x + 703 = 0$ has no real solution. \\
When x - 12 = 0, x = 12 \\
\begin{tabular}{|c|c|c|c|c|}
\hline
Intervals & Test value x & x - 12 & 6x^2 + 59x + 703 & (x - 12)(6x^2 + 59x + 703) \\
\hline
$x < 12$ & 11 & - & + & - \\
\hline
$x > 12$ & 13 & + & + & + \\
\hline
\end{tabular} \\
$D = \{x\in\mathbb{R}|x\geq12\} \\
3(12) + 1 = 37 \\
2(12) - 5 = 19 \\$
When the length is greater or equal to 37 m, the height is greater or equal to 19 m, and the width is greater or equal to 12 m, the volume of the container is at least 8436 m^3.
\end{enumerate}
\end{document}
Respuesta1
Hay errores en su documento, por lo que, de hecho, no se compila. Es por eso que en la salida (en la que no debes confiar de todos modos porque hay errores) el último elemento de la enumeración no está alineado correctamente.
- En la línea 122, escribiste
cm^3
en modo texto, pero el exponente escrito con^3
debe estar en modo matemático. Para componer unidades, la mejor forma es utilizarsiunitx
: simplemente podrías reemplazarcm^3
con\unit{cm^3}
. - En la línea 137, hay polinomios con exponentes en modo texto. Eso debería estar en modo matemático.
- En la línea 147, escribiste
m^3
en modo texto, por lo que ocurre el mismo error que concm^3
.
Aquí hay una versión corregida de su ejemplo.
\documentclass[12pt]{article}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[margin=0.5in]{geometry}
\usepackage{siunitx}
\title{Unit 1 Assessment, Part 2}
\date{May 2022}
\begin{document}
\maketitle
\begin{enumerate}
\item x - intercepts of the quadratic function $f(x)=-x^{2}+7x-6$ is at: \\
$0 = -x^{2} + 7x - 6 = (x - 1)(-x + 6) \\
x = 1,x = 6$ \\
The vertical asymptotes of the reciprocal function $g(x)=\frac{1}{-x^{2}+7x-6}$: \\
$x = 1,x = 6$ \\
\\
The horizontal asymptote of the reciprocal is y = 0 since all reciprocal functions have a horizontal asymptote at y = 0. \\
\\
The interval of increase of the quadratic function is $(-\infty,3.5)$, and the interval of decrease of the quadratic function is $(3.5,\infty)$. Therefore, the interval of decrease of the reciprocal function is $(-\infty,1)\cup(1,3.5)$, and the interval of increase of the reciprocal function is $(3.5,6)\cup(6,\infty)$.\\
\\
The quadratic function has a maximum point at x = 3.5, therefore the reciprocal has a minimum point at x = 3.5. \\
\\
The positive interval of the quadratic function is (1,6), and the negative interval of the quadratic function is $(-\infty,1)\cup(6,\infty)$. Therefore, the positive interval of the reciprocal function is (1,6), and the negative interval of the quadratic function is $(-\infty,1)\cup(6,\infty)$.\\
\begin{figure}[H]
\centering
\includegraphics[scale=0.5]{example-image-a}
\caption{Graph: $f(x)=-x^{2}+7x-6$ \& $g(x)=\frac{1}{-x^{2}+7x-6}$.}
\end{figure}
\item \begin{enumerate}
\item $f(x) = \frac{-2x - 5}{3x + 18}$
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
Vertical asymptotes & Horizontal asymptotes & x - intercept & y - intercept & Domain \\
\hline
x = -6 & $y = -\frac{2}{3}$ & $(-\frac{5}{2},0)$ & $(0,-\frac{5}{18})$ & $D = \{x\in\mathbb{R}|x\neq-6\}$ \\
\hline
\end{tabular}
\end{center}
\begin{figure}[H]
\centering
\includegraphics[scale=0.5]{example-image-b}
\caption{Graph: $f(x) = \frac{-2x - 5}{3x + 18}$.}
\end{figure}
\item Positive interval: $(-6,-2.5)$ \\
Negative intervals: $(-\infty,-6)\cup(-2.5,\infty)$
\end{enumerate}
\item Find the real roots of the following rational equations.
\begin{enumerate}
\item $\frac{-7x}{9x + 11} - 12 = \frac{1}{x} \\
\frac{-7x}{9x + 11} = \frac{1 + 12x}{x} \\
(-7x)(x) = (9x + 11)(1 + 12x) \\
-7x^2 = 9x + 108x^2 + 11 + 132x \\
115x^2 + 141x + 11 = 0 \\
x = \frac{-141\pm\sqrt{141^2 - (4)(115)(11)}}{(2)(115)} \\
x \approx -0.08,x \approx -1.14$
\item $\frac{x - 1}{x + 2} = \frac{3x + 8}{5x - 1} \\
(x - 1)(5x - 1) = (x + 2)(3x + 8) \\
5x^2 - x - 5x + 1 = 3x^2 + 8x + 6x + 16 \\
2x^2 - 20x - 15 = 0 \\
x = \frac{-(-20)\pm\sqrt{(-20)^2 - (4)(2)(-15)}}{(2)(2)} \\
x = \frac{10\pm\sqrt{130}}{2}$
\end{enumerate}
\item $8x - 3 \leq 2x+1 \leq 17x - 8 \\
8x - 3 \leq 2x+1 \\
6x \leq 4 \\
x \leq \frac{2}{3} \\
2x+1 \leq 17x - 8 \\
9 \leq 15x \\
x \geq \frac{3}{5} \\
\frac{3}{5} \leq x \leq \frac{2}{3}$
\item $\frac{5x + 4}{x - 11} < \frac{5x - 7}{x + 13} \\
\frac{5x + 4}{x - 11} - \frac{5x - 7}{x + 13} < 0 \\
\frac{(5x + 4)(x + 13) - (5x - 7)(x - 11)}{(x - 11)(x + 13)} < 0 \\
\frac{5x^2 + 65x + 4x + 52 - 5x^2 + 55x + 7x - 77}{(x - 11)(x + 13)} < 0 \\
\frac{121x - 25}{(x - 11)(x + 13)} < 0 \\
\text{Critical numbers:} \\
121x - 25 = 0 \\
x = \frac{25}{121} \\
x - 11 = 0 \\
x = 11 \\
x + 13 = 0 \\
x = -13$ \\
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Intervals & Test value x & 121x - 25 & x - 11 & x + 13 & $\frac{121x - 25}{(x - 11)(x + 13)}$ \\
\hline
$x < -13$ & -14 & - & - & - & - \\
\hline
$-13 < x < \frac{25}{121}$ & 0 & - & - & + & + \\
\hline
$ \frac{25}{121} < x < 11$ & 10 & + & - & + & - \\
\hline
$x > 11$ & 12 & + & + & + & + \\
\hline
\end{tabular} \\
\\
Therefore, the solution is $(-\infty,-13)\cup(\frac{25}{121},11)$.
\item $(3 + x)(5 + x)(7 + x) = 693 \\
(15 + 3x + 5x + x^2)(7 + x) = 693 \\
105 + 15x + 56x + 8x^2 + 7x^2 + x^3 - 693 = 0 \\
x^3 + 15x^2 + 71x - 588 = 0 \\
\because 4^3 + 15(4)^2 + 71(4) - 588 = 0 \\
\therefore x - 4$ is a factor. \\
Devide $x^3 + 15x^2 + 71x - 588$ by x - 4: \\
$(x - 4)(x^2 + 19x + 127) = 0 \\
\because 19^2 - (4)(1)(127) < 0 \\
\therefore x^2 + 19x + 127 = 0$ has no real solution. \\
When x - 4 = 0, x = 4 \\
The value of x is 4 will produce a box with a volume of 693 \unit{cm^3}.
\item Let x represent the width in meters. \\
$(3x + 1)(2x - 5)x \geq 8436 \\
6x^3 - 13x^2 - 5x - 8436 \geq 0 \\
\because 6(12)^3 - 13(12)^2 - 5(12) - 8436 = 0 \\
\therefore x - 12$ is a factor. \\
Devide $6x^3 - 13x^2 - 5x - 8436$ by x - 12: \\
$(x - 12)(6x^2 + 59x + 703) \geq 0 $\\
Critical number: \\
$\because 59^2 - (4)(6)(703) < 0 \\
\therefore 6x^2 + 59x + 703 = 0$ has no real solution. \\
When x - 12 = 0, x = 12 \\
\begin{tabular}{|c|c|c|c|c|}
\hline
Intervals & Test value x & x - 12 & $6x^2 + 59x + 703$ & $(x - 12)(6x^2 + 59x + 703)$ \\
\hline
$x < 12$ & 11 & - & + & - \\
\hline
$x > 12$ & 13 & + & + & + \\
\hline
\end{tabular} \\
$D = \{x\in\mathbb{R}|x\geq12\} \\
3(12) + 1 = 37 \\
2(12) - 5 = 19 \\$
When the length is greater or equal to 37 m, the height is greater or equal to 19 m, and the width is greater or equal to 12 m, the volume of the container is at least 8436 \unit{m^3}.
\end{enumerate}
\end{document}
Ahora se compila y el último elemento de la enumeración está correctamente alineado en la salida.
Creo que también debo señalar que todavía hay errores tipográficos en su documento, incluso si no resultan en errores de LaTeX. Aquí hay dos sugerencias.
x
A veces se escribe en modo texto cuando pretende ser una variable matemática, por ejemplo, en la primera línea del elemento 7 de la enumeración. Cuando "x" denota una cantidad matemática, siempre debe escribirse en modo matemático.- Muchas de las líneas con manipulaciones algebraicas y otro contenido matemático serían mucho más fáciles de leer si usaras entornos matemáticos de visualización (por ejemplo
equation
,align
ogather
) para escribirlas.
Respuesta2
El problema se debe a que m^3 en el séptimo elemento. Eso es un error; escribir m^3
para obtener m al cubo solo funciona en modo matemático. Úselo m\textsuperscript{3}
en su lugar.