Coloque la figura al lado de dos entornos enumerados, uno al lado del otro.

Coloque la figura al lado de dos entornos enumerados, uno al lado del otro.

Esto es lo que me gustaría tener: ingrese la descripción de la imagen aquí

Esto es lo que tengo actualmente:

\documentclass{report}

\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
  \def\svgwidth{#1\columnwidth}
  \import{./figures/}{#2.pdf_tex}
}

\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.

\begin{wrapfigure}{r}{0.4\linewidth}
  \centering
  \caption{$y = g(x)$}
  \incfig[0.4]{limit-graph}
  \label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
  \begin{enumerate}
    \item[\textbf{2.)}] $g(5)$.
      \vspace{2cm}
    \item[\textbf{10.)}] $g(-2)$.
      \vspace{2cm}
    \item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
      \vspace{2cm}
    \end{enumerate}\columnbreak\begin{enumerate}
    \item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
      \vspace{2cm}
    \item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
      \vspace{2cm}
    \item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
      \vspace{2cm}
  \end{enumerate}
\end{multicols}

Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\

\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}

Pero este es el resultado:

ingrese la descripción de la imagen aquí

¿Qué estoy haciendo mal?

Respuesta1

Propongo usar el paquete de tareas y poner el gráfico en una minipágina.

    %https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
    \documentclass{report}
    \usepackage{tasks}
    \usepackage{graphicx}


    \parindent=0pt
    \settasks{label=\bfseries\arabic*.),label-width=2em}
    \begin{document}
    Copy each of the following expressions onto your paper and either state the
    value or state that the value is undefined or doesn't exist. Make sure that
    when discussing the values you use proper terminology. All expressions are in
    reference to the function $g$ shown in Figure.

    \begin{minipage}[t]{0.6\linewidth}
        \vspace{0pt}
    \begin{tasks}[start=2](2)
        \task $g(5)$.
        \vspace{2cm}
        \task $g(-2)$.
        \vspace{2cm}
    \end{tasks}
    \begin{tasks}[start=10](2)
        \task $\lim_{x \to 2^{+}} g(t)$.
        \vspace{2cm}
        \task $\lim_{t \to 5} g(t)$.
        \vspace{2cm}
        \task $\lim_{t \to 2^{-}} g(t)$.
        \vspace{2cm}
        \task $\lim_{x \to -2} g(t)$.
        \vspace{2cm}
    \end{tasks}
    \end{minipage}%
    \begin{minipage}[t]{0.4\linewidth}
        \vspace{0pt}
        \centering
        \includegraphics[width=\linewidth]{example-image-duck}
        $y = g(x)$
    \end{minipage}

    Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
    each of the following limit values. Make sure that you include table numbers,
    table captions, and meaningful column headings. Make sure that your input
    values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
    sure that you round your output values in such a way that a clear and
    compelling pattern in the output is clearly demonstrated by your stated
    values. Make sure that you state the limit value!
    [\textbf{\textit{2pts}}] 

    \begin{tasks}[start=19](2)
    \task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
    \end{tasks}
    \end{document}

EDITAR2espacio problemático Una mejor solución con paracol.

La opción de depuración del paquete es muy interesante.

            %https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
            \documentclass{report}
            \usepackage{graphicx}
            \usepackage{tasks}
            \usepackage{paracol}

            \parindent=0pt
            \settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm,debug}
            %\settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm}
            \begin{document}

            Copy each of the following expressions onto your paper and either state the
            value or state that the value is undefined or doesn't exist. Make sure that
            when discussing the values you use proper terminology. All expressions are in
            reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.

            \smallskip
            \begin{paracol}{2}
        \begin{tasks}[start=2](2)
        \task $g(5)$.
        \task $g(-2)$.
    \end{tasks}
    \begin{tasks}[start=10](2)
        \task $\lim_{x \to 2^{+}} g(t)$.
        \task $\lim_{t \to 5} g(t)$.
        \task $\lim_{t \to 2^{-}} g(t)$.
        \task $\lim_{x \to -2} g(t)$.
    \end{tasks}
    \switchcolumn
    \begin{figure}
    \includegraphics[width=\linewidth,height=7cm]{example-image-duck}
    \caption{$y = g(x)$}
    \label{fig:limit_graph}    
    \end{figure}
    \end{paracol}       

            Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
            each of the following limit values. Make sure that you include table numbers,
            table captions, and meaningful column headings. Make sure that your input
            values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
            sure that you round your output values in such a way that a clear and
            compelling pattern in the output is clearly demonstrated by your stated
            values. Make sure that you state the limit value!
            [\textbf{\textit{2pts}}] 

            \begin{tasks}[start=19]
            \task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
            \end{tasks}
            \end{document}

Respuesta2

Aquí está mi solución:

\documentclass{report}

\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
  \def\svgwidth{#1\columnwidth}
  \import{./figures/}{#2.pdf_tex}
}

\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.

\begin{wrapfigure}[7]{r}{0.4\linewidth}
  \centering
  \incfig[0.4]{limit-graph}
  \caption{$y = g(x)$}
  \label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
  \begin{enumerate}
    \item[\textbf{2.)}] $g(5)$.
      \vspace{2cm}
    \item[\textbf{10.)}] $g(-2)$.
      \vspace{2cm}
    \item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
      \vspace{2cm}
    \end{enumerate}\columnbreak\begin{enumerate}
    \item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
      \vspace{2cm}
    \item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
      \vspace{2cm}
    \item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
      \vspace{2cm}
  \end{enumerate}
\end{multicols}
\vspace{1.1cm}

Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\

\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}

Aquí está el resultado:

ingrese la descripción de la imagen aquí

No cambié mucho. Simplemente cambié la ubicación del título y proporcioné explícitamente el número de líneas a ajustar wrapfigurepara que no continúe en el siguiente párrafo.

información relacionada