Espacio horizontal antes de subecuaciones alineadas

Espacio horizontal antes de subecuaciones alineadas

Utilicé un entorno de subecuaciones alineadas, pero por alguna razón mis ecuaciones están alineadas en el lado derecho del papel y se caen. Quiero que estén centrados y alineados en el signo =, con el número de ecuación no debajo sino en el lado derecho de la ecuación. Este es mi código:

\documentclass{report}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{geometry}
\geometry{a4paper}
\usepackage{mathtools}
\usepackage{graphicx}
\usepackage{booktabs}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{tikz} %for simple drawings and diagram
\usetikzlibrary{fit,shapes.geometric}
\usetikzlibrary{arrows}
\usetikzlibrary{shapes}
\usepackage{pgfplots}
\usepackage{caption}
\usepackage{subcaption}

%page numbering abstract
\usepackage{etoolbox}
\patchcmd{\abstract}{\titlepage}{\clearpage}{}{}
\patchcmd{\andabstract}{\endtitlepage}{\clearpage}{}{}

%for bibliography
\usepackage{natbib}
\bibliographystyle{apa}

%Includes "References" in the table of contents
\usepackage[nottoc]{tocbibind}

%to use subsections
\usepackage{titlesec}
  \titleformat{\chapter}[hang]
    {\normalfont\huge\bfseries}
    {\thechapter}{20pt}{\huge}

\begin{document}

\chapter{Results}

\section{Elasticity analysis}

\begin{subequations} \allowdisplaybreaks
\begin{align}
\frac{\partial \lambda}{\partial q_{T,1}}&=\frac{q_{T,2}n_Tf_T(1-v)\lambda^3-q_{T,2}n_Tf_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial q_{T,2}}&=\frac{q_{T,1}n_Tf_T(1-v)\lambda^3-q_{T,1}n_Tf_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial q_{L,1}}&=\frac{q_{L,2}n_Lf_L\lambda^3-q_{L,2}n_Lf_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda}{denominator} \\
\frac{\partial \lambda}{\partial q_{L,2}}&=\frac{q_{L,1}n_Lf_L\lambda^3-q_{L,1}n_Lf_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda}{denominator} \\
\frac{\partial \lambda}{\partial a_{T,1}}&=\frac{s_{T,2}\lambda^3-s_{T,2}(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial s_{T,2}}&=\frac{s_{T,1}\lambda^3-s_{T,1}(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial s_{L,1}}&=\frac{s_{L,2}\lambda^3-(s_{L,2}q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{L,2}s_{T,2}s_{T,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial s_{L,2}}&=\frac{s_{L,1}\lambda^3-(s_{L,1}q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{L,2}s_{T,2}s_{T,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial n_T}&=\frac{q_{T,2}q_{T,1}f_T(1-v)\lambda^3-q_{T,2}q_{T,1}f_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial f_T}&=\frac{q_{T,2}q_{T,1}n_T(1-v)\lambda^3-q_{T,2}q_{T,1}n_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial n_L}&=\frac{q_{L,2}q_{L,1}f_L\lambda^3-q_{L,2}q_{L,1}f_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial f_L}&=\frac{q_{L,2}q_{L,1}n_L\lambda^3-q_{L,2}q_{L,1}n_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})\lambda^2}{denominator} \\
\frac{\partial \lambda}{\partial v}&=\frac{-q_{T,2}q_{T,1}n_Tf_T\lambda^3+q_{T,2}q_{T,1}n_Tf_T(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2}{denominator} \\
\text{with } 
denominator=4\lambda^3-(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}+q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})3\lambda^2 \\
+(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda
\end{align}
\end{subequations}

Respuesta1

Evitaría esas fracciones y movería los denominadores hacia el lado izquierdo. El significado deDpuede estar en una pantalla separada.

\documentclass{report}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{geometry}
\geometry{a4paper}
\usepackage{mathtools}
\usepackage{graphicx}
\usepackage{booktabs}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{tikz} %for simple drawings and diagram
\usetikzlibrary{fit,shapes.geometric}
\usetikzlibrary{arrows}
\usetikzlibrary{shapes}
\usepackage{pgfplots}
\usepackage{caption}
\usepackage{subcaption}

%page numbering abstract
\usepackage{etoolbox}
\patchcmd{\abstract}{\titlepage}{\clearpage}{}{}
\patchcmd{\andabstract}{\endtitlepage}{\clearpage}{}{}

%for bibliography
\usepackage{natbib}
\bibliographystyle{apa}

%Includes "References" in the table of contents
\usepackage[nottoc]{tocbibind}

%to use subsections
\usepackage{titlesec}

\titleformat{\chapter}[hang]
  {\normalfont\huge\bfseries}
  {\thechapter}
  {20pt}
  {}

\newcommand{\pder}[2]{\frac{\partial#1}{\partial#2}}

\begin{document}

\chapter{Results}

\section{Elasticity analysis}

\begin{subequations} \allowdisplaybreaks
\begin{align}
D\pder{\lambda}{q_{T,1}}&=
  q_{T,2}n_Tf_T(1-v)\lambda^3-q_{T,2}n_Tf_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2 \\
D\pder{\lambda}{q_{T,2}}&=
  q_{T,1}n_Tf_T(1-v)\lambda^3-q_{T,1}n_Tf_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2 \\
D\pder{\lambda}{q_{L,1}}&=
  q_{L,2}n_Lf_L\lambda^3-q_{L,2}n_Lf_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda \\
D\pder{\lambda}{q_{L,2}}&=
  q_{L,1}n_Lf_L\lambda^3-q_{L,1}n_Lf_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda \\
D\pder{\lambda}{a_{T,1}}&=
  s_{T,2}\lambda^3-s_{T,2}(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2 \\
D\pder{\lambda}{s_{T,2}}&=
  s_{T,1}\lambda^3-s_{T,1}(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2 \\
D\pder{\lambda}{s_{L,1}}&=
  s_{L,2}\lambda^3-(s_{L,2}q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{L,2}s_{T,2}s_{T,1})\lambda^2 \\
D\pder{\lambda}{s_{L,2}}&=
  s_{L,1}\lambda^3-(s_{L,1}q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{L,2}s_{T,2}s_{T,1})\lambda^2 \\
D\pder{\lambda}{n_T}&=
  q_{T,2}q_{T,1}f_T(1-v)\lambda^3-q_{T,2}q_{T,1}f_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2 \\
D\pder{\lambda}{f_T}&=
  q_{T,2}q_{T,1}n_T(1-v)\lambda^3-q_{T,2}q_{T,1}n_T(1-v)(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})\lambda^2 \\
D\pder{\lambda}{n_L}&=
  q_{L,2}q_{L,1}f_L\lambda^3-q_{L,2}q_{L,1}f_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})\lambda^2 \\
D\pder{\lambda}{f_L}&=
  q_{L,2}q_{L,1}n_L\lambda^3-q_{L,2}q_{L,1}n_L(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})\lambda^2 \\
D\pder{\lambda}{v}&=
  -q_{T,2}q_{T,1}n_Tf_T\lambda^3+q_{T,2}q_{T,1}n_Tf_T(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}\lambda^2
\end{align}
where
\begin{multline*}
D=4\lambda^3-(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1}+q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})3\lambda^2 \\
+(q_{L,2}q_{L,1}n_Lf_L+s_{L,2}s_{L,1})(q_{T,2}q_{T,1}n_Tf_T(1-v)+s_{T,2}s_{T,1})2\lambda
\end{multline*}
\end{subequations}

\end{document}

ingrese la descripción de la imagen aquí

información relacionada