¿Cómo puedo convertir mi documento similar a este?

¿Cómo puedo convertir mi documento similar a este?

ingrese la descripción de la imagen aquí

\ Hace unos días encontré estas notas y me impresionó el estilo en el que están escritas. También quería hacer mis notas (de matemáticas) así.

Pero soy un principiante en látex (al dorso), por lo que no tenía mucho conocimiento sobre cómo puedo convertir mi documento de esta manera. Sin embargo, utilicé este sitio durante unos días y de alguna manera entendí cómo puedo escribir la sección en el centro, la numeración de páginas en la parte superior, etc.

Mis códigos en el preámbulo son:

\documentclass[a4paper,twoside,english]{article}
%\usepackage[T1]{fontenc}
%\usepackage{tgtermes}
%\usepakage{times}
\usepackage[paperheight=600pt,paperwidth=515pt ,bottom=-7mm,right=22.4mm]{geometry}
\setlength{\headsep}{5mm}
%\setlength{\hoffset}{0pt}
\setlength{\oddsidemargin}{1pt}
%\setlength{\marginparwidth}{0mm}
%\setlength{\marginparsep}{0mm}
\setlength{\evensidemargin}{1pt}
\setlength{\footskip}{1.6mm}
\setlength{\voffset}{-8mm}
\setlength{\headheight}{5mm}
\setlength{\textwidth}{370pt}
\setlength{\textheight}{530pt}
%\usepackage{xcolor}
\usepackage{titlesec}
%\titleformat{\subsection}[hang]{\bfseries}{}{1em}{}
%\setcounter{secnumdepth}{1}
%\usepackage{sectsty}
%\allsectionsfont{\centering}
%\titlelabel{\thetitle . \enspace}
\renewcommand\thesection{\arabic{section}.}
\titleformat{\section}[block]{\Large\centering}{\arabic{section}.}{1em}{}
%\sectionfont{\centering}
\usepackage{fancyhdr}
\usepackage{calc}
%\usepackage{showframe}
%\usepackage{fourier}
\usepackage{graphicx} % Required for inserting images
\usepackage{blindtext}
\usepackage{amsfonts,amsmath,amssymb,amsthm}
%\renewcommand\thesubsection{\thesection.\arabic{subsection}}

Pregunta: Pero lo único que tengo atascado y después de mucha búsqueda no puedo entender es cuál es el nombre de estos estilos de fuente y cómo puedo cargar estas fuentes en micompleto¿documento?

ingrese la descripción de la imagen aquí

Además, también intenté establecer márgenes similares. Pero no pude calcular los márgenes con solo mirar el pdf. ¿Es posible calcular márgenes similares a partir del pdf? En caso afirmativo, ¿cómo?

Cualquier ayuda será apreciada. Gracias.

Editar:
Aquí estoy hablando del estilo de fuente de todo el documento. Aunque a primera vista las tipografías de este pdf me parecen predeterminadas. Pero cuando lo comparé con mi pdf escrito (en fuentes predeterminadas), eso es

ingrese la descripción de la imagen aquí

Descubrí que las fuentes del documento no son las predeterminadas.

Editar.2
El ejemplo mínimo de trabajo es

\documentclass[a4paper,twoside,english]{article}
\usepackage{graphicx} % Required for inserting images
\usepackage[paperheight=600pt,paperwidth=515pt ,bottom=-7mm,right=22.4mm]{geometry}
\setlength{\headsep}{5mm}
\setlength{\oddsidemargin}{1pt}
\setlength{\evensidemargin}{1pt}
\setlength{\footskip}{1.6mm}
\setlength{\voffset}{-8mm}
\setlength{\headheight}{5mm}
\setlength{\textwidth}{370pt}
\setlength{\textheight}{530pt}
\usepackage{times}
\usepackage{titlesec}
\renewcommand\thesection{\arabic{section}.}
\titleformat{\section}[block]{\Large\centering\scshape}{\arabic{section}.}{1em}{}
\usepackage{fancyhdr}
\usepackage{blindtext}
\usepackage{amsfonts,amsmath,amssymb,amsthm}
\title{My doc}
\begin{document}
\section{Hello}
\blindtext
\end{document}

Editar.3
Con la ayuda y orientación de Mirco, modifiqué ligeramente el código de Mirco y obtuve lo que realmente quería.
Además, ahora sé la dimensión del pdf que es 11,33 × 14,67 pulgadas (retrato). ¿Cómo puedo emitir esto en el documento?

\documentclass{amsart}

\usepackage[a4paper,margin=3.75cm, top=1.74cm,bottom=1.5cm,left=3.74cm,right=3.74cm]{geometry}
\usepackage[english]{babel}
\hyphenation{pre-image} % avoid "preim-age"

\usepackage{cleveref} % for "clever" cross-references
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhead[C]{REAL ANALYSIS}
\fancyhead[LE,RO]{\thepage}
\fancyfoot{}
\renewcommand{\headrulewidth}{0pt}
\usepackage{blindtext}

%\usepackage{amsthm} % is loaded automatically by 'amsart' class
\theoremstyle{theorem} % italic lettering
\newtheorem{theorem}{Theorem}[section] 
\newtheorem{proposition}[theorem]{Proposition} % all theorem-like environments to share the same counter

\theoremstyle{definition} % upright lettering
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}

\theoremstyle{remark}
\newtheorem*{remark}{Remark} % 'remark' env.: not numbered

\usepackage[scr=euler]{mathalpha} % for "Euler script"

\usepackage{enumitem} % for \newlist and \setlist macros
\newlist{thmenumerate}{enumerate}{1} % 'enumerate'-like list
\setlist[thmenumerate]{label=\upshape(\alph*)} % alphabetical numbering

\crefname{thmenumeratei}{part}{parts} % label for parts of enumerated list

% -------------

\begin{document}
\section{Real Analysis}

\addtocounter{theorem}{2} % just for this example

\noindent

(earlier stuff)

\begin{definition} 
Let $(X,\mathscr{M})$ be a measurable space. A function $f\colon X\to[-\infty,\infty]$ is said to be $\mathscr{M}$-measurable (or simply \emph{measurable} when the context is clear) if the preimage 
$f^{-1}((a,\infty])=\{x\in X\colon f(x)>a\}$ is measurable for every real number~$a$.
\end{definition}

\begin{example} \phantom{.}\par % force an immediate line break
\begin{thmenumerate}
\item Constant functions are measurable.
\item Given a subset $A$ of $X$, the characteristic function $\chi_{A}$ is a measurable function if and only if $A$ is measurable.
\item The continuous functions $f\colon \mathbb{R}^d\to \mathbb{R}$ are \dots
\item The monotone functions $f\colon \mathbb{R}\to \mathbb{R}$ are \dots
\end{thmenumerate}
\end{example}

\begin{proposition} 
Let $(X,\mathscr{M})$ be a measurable space and let $f\colon X\to[-\infty,\infty]$ be a function. Then the following statements are equivalent:
\begin{thmenumerate}
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\end{thmenumerate}
\end{proposition}

\begin{proposition} 
Let $(X,\mathscr{M})$ be a measurable space. If $f$ and $g$ are measurable functions defined on $X$, then the sets
\begin{thmenumerate}
\item \label{part:greaterthan} $\{x\in X\colon f(x)>g(x)\}$,
\item \label{part:greaterthanorequal} $\{x\in X\colon f(x)\ge g(x)\}$, and 
\item \label{part:equal} $\{x\in X\colon f(x)=g(x)\}$
\end{thmenumerate}
are all measurable.
\end{proposition}

\begin{proof}
If $r_1,r_2,\dots$ is an enumeration of the rational numbers, then
\[
\{x\in X : f(x)>g(x)\} =
\bigcup_{n=1}^{\infty} \bigl[x\in X: f(x)>r_n\} \cap
\{x\in X: g(x)<r_n\}\bigr] 
\]
is measurable since it is a countable union of measurable sets, establishing \cref{part:greaterthan}.

\Cref{part:greaterthanorequal} follows by noting that
\[
\{x\in X: f(x)\ge g(x)\}=\{x\in X: g(x)>f(x)\}^c,
\]
is measurable by \ref{part:greaterthan}.

Finally, to show \cref{part:equal} observe that
\[
\{x\in X:f(x)=g(x)\}=\{x\in X: f(x)\ge g(x)\} \cap 
\{x\in X: g(x)\ge f(x)\}
\]
is measurable by \ref{part:greaterthanorequal}.
\end{proof}

\begin{remark}
We now want to show that \dots
\end{remark}

\noindent
(more stuff)

\section{Measure}

\begin{definition}
By a \emph{measure} $\mu$ on a measurable space $(X,\mathscr{M})$, we mean an extended real valued nonnegative set function $\mu\colon\mathscr{M}\to[0, \infty]$ for which $\mu(\emptyset)=0$ and which is \emph{countably additive} in the sense that for any countable disjoint collection $\{E_n\}_{n=1}^{\infty}$ of measurable sets,
\[
\mu\biggl(\,\bigcup_{n=1}^{\infty} E_n \biggr) =
\sum_{n=1}^{\infty} \mu(E_n)\,.
\]
By a \emph{measure space} $(X,\mathscr{M},\mu)$ we mean a measurable space $(X,\mathscr{M})$ together with a meausure~$\mu$ defined on~$\mathscr{M}$.
\end{definition}
\blindtext
\blindtext[4]
\section{Blind}
\blindtext[4]
\section{Help}
\blindtext[4]
\end{document}

Respuesta1

En lugar de reinventar la rueda en términos de elegir los elementos de diseño de un documento, emplearía una clase de documento adecuada que ya defina muchos de los elementos estructurales, como el formato de los encabezados de sección, del documento de interés. Para su documento en particular, uno de los principales candidatos parece ser la amsartclase de documento. La amsartclase de documento también carga automáticamente los paquetes amsmath, amssymby amsthm.

Y haga un buen uso de las capacidades de los paquetes LaTeX, tales como geometry(para establecer parámetros de página y margen), enumitem(para listas personalizadas similares a enumeraciones, por ejemplo) y cleveref(para fines de referencias cruzadas).

ingrese la descripción de la imagen aquí

\documentclass{amsart}

\usepackage[a4paper,margin=3.75cm]{geometry}

\usepackage[english]{babel}
\hyphenation{pre-image} % avoid "preim-age"

\usepackage{cleveref} % for "clever" cross-references

%\usepackage{amsthm} % is loaded automatically by 'amsart' class
\theoremstyle{theorem} % italic lettering
\newtheorem{theorem}{Theorem}[section] 
\newtheorem{proposition}[theorem]{Proposition} % all theorem-like environments to share the same counter

\theoremstyle{definition} % upright lettering
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}

\theoremstyle{remark}
\newtheorem*{remark}{Remark} % 'remark' env.: not numbered

\usepackage[scr=euler]{mathalpha} % for "Euler script"

\usepackage{enumitem} % for \newlist and \setlist macros
\newlist{thmenumerate}{enumerate}{1} % 'enumerate'-like list
\setlist[thmenumerate]{label=\upshape(\alph*)} % alphabetical numbering

\crefname{thmenumeratei}{part}{parts} % label for parts of enumerated list

% -------------

\begin{document}
\section{Real Analysis}
\addtocounter{theorem}{2} % just for this example

\noindent
(earlier stuff)

\begin{definition} 
Let $(X,\mathscr{M})$ be a measurable space. A function $f\colon X\to[-\infty,\infty]$ is said to be $\mathscr{M}$-measurable (or simply \emph{measurable} when the context is clear) if the preimage 
$f^{-1}((a,\infty])=\{x\in X\colon f(x)>a\}$ is measurable for every real number~$a$.
\end{definition}

\begin{example} \phantom{.}\par % force an immediate line break
\begin{thmenumerate}
\item Constant functions are measurable.
\item Given a subset $A$ of $X$, the characteristic function $\chi_{A}$ is a measurable function if and only if $A$ is measurable.
\item The continuous functions $f\colon \mathbb{R}^d\to \mathbb{R}$ are \dots
\item The monotone functions $f\colon \mathbb{R}\to \mathbb{R}$ are \dots
\end{thmenumerate}
\end{example}

\begin{proposition} 
Let $(X,\mathscr{M})$ be a measurable space and let $f\colon X\to[-\infty,\infty]$ be a function. Then the following statements are equivalent:
\begin{thmenumerate}
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\end{thmenumerate}
\end{proposition}

\begin{proposition} 
Let $(X,\mathscr{M})$ be a measurable space. If $f$ and $g$ are measurable functions defined on $X$, then the sets
\begin{thmenumerate}
\item \label{part:greaterthan} $\{x\in X\colon f(x)>g(x)\}$,
\item \label{part:greaterthanorequal} $\{x\in X\colon f(x)\ge g(x)\}$, and 
\item \label{part:equal} $\{x\in X\colon f(x)=g(x)\}$
\end{thmenumerate}
are all measurable.
\end{proposition}

\begin{proof}
If $r_1,r_2,\dots$ is an enumeration of the rational numbers, then
\[
\{x\in X : f(x)>g(x)\} =
\bigcup_{n=1}^{\infty} \bigl[x\in X: f(x)>r_n\} \cap
\{x\in X: g(x)<r_n\}\bigr] 
\]
is measurable since it is a countable union of measurable sets, establishing \cref{part:greaterthan}.

\Cref{part:greaterthanorequal} follows by noting that
\[
\{x\in X: f(x)\ge g(x)\}=\{x\in X: g(x)>f(x)\}^c,
\]
is measurable by \ref{part:greaterthan}.

Finally, to show \cref{part:equal} observe that
\[
\{x\in X:f(x)=g(x)\}=\{x\in X: f(x)\ge g(x)\} \cap 
\{x\in X: g(x)\ge f(x)\}
\]
is measurable by \ref{part:greaterthanorequal}.
\end{proof}

\begin{remark}
We now want to show that \dots
\end{remark}

\noindent
(more stuff)

\section{Measure}

\begin{definition}
By a \emph{measure} $\mu$ on a measurable space $(X,\mathscr{M})$, we mean an extended real valued nonnegative set function $\mu\colon\mathscr{M}\to[0, \infty]$ for which $\mu(\emptyset)=0$ and which is \emph{countably additive} in the sense that for any countable disjoint collection $\{E_n\}_{n=1}^{\infty}$ of measurable sets,
\[
\mu\biggl(\,\bigcup_{n=1}^{\infty} E_n \biggr) =
\sum_{n=1}^{\infty} \mu(E_n)\,.
\]
By a \emph{measure space} $(X,\mathscr{M},\mu)$ we mean a measurable space $(X,\mathscr{M})$ together with a meausure~$\mu$ defined on~$\mathscr{M}$.
\end{definition}

\end{document}

información relacionada