(Títulos) ¿Por qué las cifras y las matemáticas aplastan mi título, autor y fecha?

(Títulos) ¿Por qué las cifras y las matemáticas aplastan mi título, autor y fecha?

Parece que al intentar agregar matemáticas o cifras a un documento, los tres quedan aplastados. Hace que los documentos parezcan inconsistentes y me pregunto si hay una solución para esto.

\documentclass[letterpaper,12pt]{article}

\usepackage{newfloat}
\usepackage[showframe, left=1.5cm, right=1.5cm, top=1.5cm, bottom=1.5cm]{geometry}
\usepackage{titling}
\usepackage{indentfirst}
\usepackage{fancyhdr}
\usepackage{microtype}
\usepackage{unicode-math}
    \setmainfont{Times New Roman}[Ligatures=TeX]
    \setmathfont{STIX Two Math}

\setlength{\droptitle}{-2cm}

\renewcommand{\maketitlehookb}{\vspace{-1cm}} 

\renewcommand{\maketitlehookd}{\vspace{-.5cm}} 

\renewcommand{\arraystretch}{1.5}

% }

\title{Title of Document}
\author{Author Name Generic}
\date{\today}

\begin{document}

\maketitle



\end{document}

Código con matemáticas para comparar.

% {
\documentclass[letterpaper,12pt]{article}

\usepackage{newfloat}
\usepackage[showframe, left=1.5cm, right=1.5cm, top=1.5cm, bottom=1.5cm]{geometry}
\usepackage{titling}
\usepackage{indentfirst}
\usepackage{fancyhdr}
\usepackage{microtype}
\usepackage{siunitx}
\usepackage{stackengine}
\usepackage{cancel}
\usepackage{unicode-math}
    \setmainfont{Times New Roman}[Ligatures=TeX]
    \setmathfont{STIX Two Math}

\setlength{\droptitle}{-2cm}

\renewcommand{\maketitlehookb}{\vspace{-1cm}} 

\renewcommand{\maketitlehookd}{\vspace{-.5cm}} 

\renewcommand{\arraystretch}{1.5}

% }

\title{Title of Document}
\author{Author Name Generic}
\date{\today}

\begin{document}

\maketitle

      Identities \newline

            The Sum and Difference Identities

            \begin{gather}
                \cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)\\
                \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)\\
                \sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)\\
                \sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)
            \end{gather} 
            
    \textbf{Example 1:} Evaluating a Trigonometric Function \newline
    
        A. Find the exact value of $\displaystyle \sin\left(\dfrac{\pi}{12}\right)$

        \begin{align}
            \frac{\pi}{12} &= \frac{4\pi}{12} - \frac{3\pi}{2}\\
            &= ~ \frac{\pi}{3} ~~~~~~~\frac{\pi}{4}
        \end{align}

        \begin{align}
            &\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right)\\
            &= \sin \left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{4}\right)\\
            &= \left(\frac{\sqrt{2}}{2}\right) \left(\frac{\sqrt{2}}{2}\right) - \left(\frac{1}{2}\right) \left(\frac{\sqrt{2}}{2}\right)\\
            &= \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}
        \end{align}
        
        B. Find the exact value of $\cos(\ang{75}).$   

        \begin{align}
            &\cos(\overset{\alpha}{\ang{30}} + \overset{\beta}{\ang{45}})\\
            &= \cos(\ang{30})\cos(\ang{45})-\sin(\ang{30})\sin(\ang{45})\\
            &= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{2}}{2}\right) - \left(\frac{1}{2}\right) \left(\frac{\sqrt{2}}{2}\right)\\
            &= \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}
        \end{align}
        
    \textbf{Example 2}: Proving a Cofunction Identity \newline

        Use a difference formula to prove the cofunction identity:

        \begin{gather}   
        \cos \left(\frac{\pi}{2} - x\right) = \sin(x) 
        \end{gather}

        \begin{align}
            \cos \left(\frac{\pi}{2} - x\right) &= \cos \overset{0}{\left(\frac{\pi}{2}\right)} \cos(x) + \sin \overset{1}{\left(\frac{\pi}{2}\right)} \sin(x)\\
            &= 0 \ast \cos(x) + 1 \ast \sin(x)\\
            &= \sin(x)
        \end{align}
        
    \textbf{Example 3:} Solve
    
        \[
        \sin\overset{\alpha}{(x)}\sin\overset{\beta}{(2x)} + \cos\overset{\alpha}{(x)}\cos\overset{\beta}{(2x)} = \frac{\sqrt{3}}{2} 
        \]

                Recall: $\cos(-x) = \cos(x)$    

        \begin{align}
            \cos (x - 2x) &= \frac{\sqrt{3}}{2}\\
            &\cos (-x) = \frac{\sqrt{3}}{2}\\
            &\cos x = \frac{\sqrt{3}}{2}\\
            &x = \frac{\pi}{6} + 2 \pi k\\
            &x = \frac{11 \pi}{6} + 2 \pi k
        \end{align}
        
            Identities \newline

            The Product to Sum Identities

            \begin{gather}
                \sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha + \beta) + \sin(\alpha - \beta))\\
                \sin(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))\\
                \cos(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha + \beta) + \cos(\alpha - \beta))
            \end{gather}
            
    \textbf{Example 4:} Write $\sin\overset{\alpha}{(2t)}\sin\overset{\beta}{(4t)}$ as a sum or difference

            \begin{align}
                &= \frac{1}{2}(\cos(2t - 4t) - \cos(2t + 4t))\\
                &= \frac{1}{2}(\cos(-2t) - \cos (6t))\\
                &= \frac{1}{2} (\cos(2t) - \cos (6t))
            \end{align}
            
            Identities \newline

            The Sum to Product Identities

            \begin{align}
                \sin(u) + \sin(v) = 2\sin\left(\frac{u + v}{2}\right)\cos
                \left(\frac{u - v}{2}\right)\\
                \sin(u) - \sin(v) = 2\sin\left(\frac{u - v}{2}\right)\cos
                \left(\frac{u + v}{2}\right)\\
                \cos(u) + \cos(v) = 2\cos\left(\frac{u + v}{2}\right)\cos
                \left(\frac{u - v}{2}\right)\\
                \cos(u) - \cos(v) = 2\cos\left(\frac{u - v}{2}\right)\cos
                \left(\frac{u + v}{2}\right)
            \end{align}
            
    \textbf{Example 5:} Evaluate $\cos\stackon{(\ang{15})}{u} - \cos\stackon{(\ang{75})}{v}$ \newline

    Recall: $\sin(-30) = -\sin(30)$

            \begin{align}
                &-2 \sin \left(\frac{\ang{15} + \ang{75}}{2}\right) \sin\left(\frac{\ang{15} - \ang{75}}{2}\right)\\
                &+ 2 \sin (\ang{45}) ~ \sin (\ang{30})\\
                &= \cancel{2} \left(\frac{\sqrt{2}}{\cancel{2}}\right) \left(\frac{1}{2}\right) = \left(\frac{\sqrt{2}}{2}\right)
            \end{align}


\end{document}

ingrese la descripción de la imagen aquí

Si alguien pudiera ayudar con esto sería de gran ayuda.

información relacionada