Latex/MikTex Coloque varias figuras en un documento de artículo de dos columnas.

Latex/MikTex Coloque varias figuras en un documento de artículo de dos columnas.

Estoy usando látex para colocar la primera figura en la parte superior central de la página que abarca las dos columnas, justo después de esta figura quiero agregar otras 2 figuras con algunos párrafos y ecuaciones a la misma página en el entorno de dos columnas:

\documentclass[10pt,a4paper,twoside,twocolumn]{article}
\usepackage[utf8]{inputenc}
\usepackage[left=0.53in,right=0.83in,top=0.3in,bottom=1.7in]{geometry}
%\usepackage[hmarginratio=1:1]{geometry}
\usepackage{fancyhdr}
%\usepackage{multicol}
\usepackage{times}
\usepackage{lettrine}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{etoolbox}% http://ctan.org/pkg/etoolbox
\usepackage{sectsty}
%\usepackage{float}
%\usepackage[hang]{footmisc}
%
\pagestyle{fancy}
\renewcommand\thesection{\Roman{section}.}
%\renewcommand\thesubsection{\thesection.\arabic{subsection}}
\setlength{\columnsep}{0.43cm}
\setlength{\parindent}{0.16in}
%\setlength\footnotemargin{10pt} %
%\footnotesep is the space between footnotes:
%\setlength{\footnotesep}{0.5cm}
%\footins is the space between the text body and the footnotes:
\setlength{\skip\footins}{0.70cm}
\renewcommand*\footnoterule{}
%\pagestyle{myheadings}
%\pdfpagewidth 8.5in
%\pdfpageheight 11in
\headheight 55pt
%\footerheight 55pt
%\rhead{\scriptsize{\thepage}}
%\chead{Middle top}
%\lhead{\scriptsize{IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 7, JULY 2004}}
\fancyhead[LE,RO]{\scriptsize{\thepage}}
\fancyhead[LO,RE]{\scriptsize{IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 7, JULY 2004}}
\cfoot{}
%\rfoot{Right bottom}
%\cfoot{\thepage}
%\lfoot{Left bottom}
\renewcommand{\headrulewidth}{0pt}
%Control the footnote indent
%\makeatletter
%\renewcommand\@makefntext[1]{%
 % \noindent\makebox[0.1em][r]{\@makefnmark}#1}
%\makeatother
%
%{\normalfont\fontfamily{phv}\fontsize{16}{19}\bfseries}{\thesection}{1em}{}
%\titleformat{\section}
 % {\normalfont\fontfamily{ptmr}\fontsize{16}{19}}{\thesection}{1em}{}
%\titleformat{\subsection}
 % {\normalfont\fontfamily{ptmr}\fontsize{14}{17}}{\thesubsection}{1em}{}
%\titleformat{\subsubsection}
 % {\normalfont\fontfamily{ptmr}\fontsize{14}{17}}{\thesubsubsection}{1em}{}
%
\makeatletter
%\patchcmd{\@makechapterhead}{\bfseries}{\relax}{}{}% Non-bold \chapter name
%\patchcmd{\@makechapterhead}{\bfseries}{\relax}{}{}% Non-bold \chapter title
\patchcmd{\section}{\bfseries}{\relax}{}{}% Non-bold \section
\patchcmd{\subsection}{\bfseries}{\relax}{}{}% Non-bold \subsection
\makeatother
%
\allsectionsfont{\centering}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{figure*}
\centering
\includegraphics[width=3.0in]{Image1}
\caption{\scriptsize{Fig. 1. (a) Intensity profile extracted from a real image. (b) The estimated 1st derivative information. (c) The estimated contrast information with$ \sigma = 2:0.$}}
\label{Fig1}
 \end{figure*}
%
\begin{figure}
 \begin{centering}
  \includegraphics[width=0.75\columnwidth]{Image3}
  \caption{\scriptsize{Fig. 2. Definition of contrast.}}
  \label{Fig2}
 \end{centering}
\end{figure}
By convoluting a profile  $ I(x) $ with this operator, we have
\begin{equation}
\label{eq:3}
\varphi (x)=I(x)\otimes B(x)= I(x) - I(x)\otimes N(x;0,\sigma).
\end{equation}
Basically,$\varphi (x)$ can be imagined as the 2nd derivative of the profile I(x).    Moreover, the local extremes of $ \varphi (x)$ correspond to the high-curvature points of $I(x)$. Fig. 1(c) shows the contrast information extracted from Fig. 1(a) using (3) with$\sigma = 2.0$ , which is determined empirically. It is obvious that Fig. 1(c) offers much more reliable information than Fig. 1(b).\\
Since the 2nd derivative is orientation-dependent, the contrast information at an image pixel has to be measured along various orientations. In the proposed algorithm, we detect boundaries by checking the relations between each pixel and its eight neighbors. Hence, four directional operators are used at each pixel to measure the curvature information at that pixel. These four directions are 0 , 45 , 90 and 135 , respectively. All these four directional contrast data are then grouped together in subsequent processes.
\section{\small{COLOR CONTRAST IN THE CIE LAB COLOR SPACE}}
In color image segmentation, a proper choice of color space is also a crucial issue. In the selection of color space, we choose the CIE $ L^*a^*b^* $ color space to work on due to its three major properties: $1)$ separation of achromatic information from chromatic information, $ 2)$ uniform color space, and $ 3) $ similar to human visual perception $[12]$. Here,$ L^*$  represents the luminance component, while $ a^* $ and $ b^* $ represent color components. The formulae for converting an RGB image into the coordinates can be found in many color-related articles, like $[12]$ and $[13]$.\\
\begin{figure}
  \centering
  \includegraphics[width=2.0in]{Image2}
  \caption {\scriptsize{Fig. 3. Example of the test pattern in the subjective experiment.}}
  \label{Fig3}
\end{figure}
In the CIE color space, the Euclidean distance between and , defined as $(4)$ is approximately equivalent to the perceptual difference between these two colors $[4]$, $[12]$. By incorporating this color difference formula into our contrast definition, we define the color contrast across an edge as$(5)$ To further explore the correlation between color contrast and the luminance level or color level, we made a subjective experiment. In our experiment, $10$ observers are involved and the patterns are displayed over a calibrated ViewSonic PT775 monitor for comparisons. Here, the values of luminance/color contrast are coarsely quantized into eleven steps, 0, 5, 10, 15, …, 50. In
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}

El resultado deseado se parece a esta imagen: La salida pdf deseada de MikTex

Se agradecerá cualquier ayuda o sugerencia para lograr este trabajo. Pasé mucho tiempo haciendo eso sin ningún éxito. Soy novato en el látex. Atentamente.

Respuesta1

Si agrego \lipsum[1-10]( \usepackage{lipsum}justo antes del código que proporcionaste y corrijo el código de la figura, obtengo exactamente lo que pareces querer.

Solo me cambié times( mathptmxel primero está obsoleto).

\documentclass[10pt,a4paper,twoside,twocolumn]{article}
\usepackage[utf8]{inputenc}
\usepackage[left=0.53in,right=0.83in,top=0.3in,bottom=1.7in]{geometry}
%\usepackage[hmarginratio=1:1]{geometry}
\usepackage{fancyhdr}
%\usepackage{multicol}
\usepackage{mathptmx}
\usepackage{lettrine}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{etoolbox}% http://ctan.org/pkg/etoolbox
\usepackage{sectsty}
\usepackage{lipsum}
%\usepackage{float}
%\usepackage[hang]{footmisc}
%
\pagestyle{fancy}
\renewcommand\thesection{\Roman{section}.}
%\renewcommand\thesubsection{\thesection.\arabic{subsection}}
\setlength{\columnsep}{0.43cm}
\setlength{\parindent}{0.16in}
%\setlength\footnotemargin{10pt} %
%\footnotesep is the space between footnotes:
%\setlength{\footnotesep}{0.5cm}
%\footins is the space between the text body and the footnotes:
\setlength{\skip\footins}{0.70cm}
\renewcommand*\footnoterule{}
%\pagestyle{myheadings}
%\pdfpagewidth 8.5in
%\pdfpageheight 11in
\headheight 55pt
%\footerheight 55pt
%\rhead{\scriptsize{\thepage}}
%\chead{Middle top}
%\lhead{\scriptsize{IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 7, JULY 2004}}
\fancyhead[LE,RO]{\scriptsize{\thepage}}
\fancyhead[LO,RE]{\scriptsize{IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 7, JULY 2004}}
\cfoot{}
%\rfoot{Right bottom}
%\cfoot{\thepage}
%\lfoot{Left bottom}
\renewcommand{\headrulewidth}{0pt}
%Control the footnote indent
%\makeatletter
%\renewcommand\@makefntext[1]{%
 % \noindent\makebox[0.1em][r]{\@makefnmark}#1}
%\makeatother
%
%{\normalfont\fontfamily{phv}\fontsize{16}{19}\bfseries}{\thesection}{1em}{}
%\titleformat{\section}
 % {\normalfont\fontfamily{ptmr}\fontsize{16}{19}}{\thesection}{1em}{}
%\titleformat{\subsection}
 % {\normalfont\fontfamily{ptmr}\fontsize{14}{17}}{\thesubsection}{1em}{}
%\titleformat{\subsubsection}
 % {\normalfont\fontfamily{ptmr}\fontsize{14}{17}}{\thesubsubsection}{1em}{}
%
\makeatletter
%\patchcmd{\@makechapterhead}{\bfseries}{\relax}{}{}% Non-bold \chapter name
%\patchcmd{\@makechapterhead}{\bfseries}{\relax}{}{}% Non-bold \chapter title
\patchcmd{\section}{\bfseries}{\relax}{}{}% Non-bold \section
\patchcmd{\subsection}{\bfseries}{\relax}{}{}% Non-bold \subsection
\makeatother
%
\allsectionsfont{\centering}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Alter some LaTeX defaults for better treatment of figures:
    % See p.105 of "TeX Unbound" for suggested values.
    % See pp. 199-200 of Lamport's "LaTeX" book for details.
    %   General parameters, for ALL pages:
    \renewcommand{\topfraction}{0.9}    % max fraction of floats at top
    \renewcommand{\bottomfraction}{0.8} % max fraction of floats at bottom
    %   Parameters for TEXT pages (not float pages):
    \setcounter{topnumber}{2}
    \setcounter{bottomnumber}{2}
    \setcounter{totalnumber}{4}     % 2 may work better
    \setcounter{dbltopnumber}{2}    % for 2-column pages
    \renewcommand{\dbltopfraction}{0.9} % fit big float above 2-col. text
    \renewcommand{\textfraction}{0.07}  % allow minimal text w. figs
    %   Parameters for FLOAT pages (not text pages):
    \renewcommand{\floatpagefraction}{0.7}  % require fuller float pages
    % N.B.: floatpagefraction MUST be less than topfraction !!
    \renewcommand{\dblfloatpagefraction}{0.7}   % require fuller float pages

    % remember to use [htp] or [htpb] for placement
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\lipsum[1-10]

%%%%%%%% ORIGINAL CODE (fixed)
\begin{figure*}
\centering
\includegraphics[width=3.0in]{Image1}
\caption{(a) Intensity profile extracted from a real image. (b) The estimated 1st 
derivative information. (c) The estimated contrast information with $\sigma = 2:0.$}
\label{Fig1}
\end{figure*}

\begin{figure}[t]
\centering
  \includegraphics[width=0.75\columnwidth]{Image3}
  \caption{Definition of contrast.}
  \label{Fig2}
\end{figure}

By convoluting a profile  $ I(x) $ with this operator, we have
\begin{equation}
\label{eq:3}
\varphi (x)=I(x)\otimes B(x)= I(x) - I(x)\otimes N(x;0,\sigma).
\end{equation}
Basically, $\varphi (x)$ can be imagined as the 2nd derivative of the profile I(x). 
Moreover, the local extremes of $ \varphi (x)$ correspond to the high-curvature points of 
$I(x)$. Fig. 1(c) shows the contrast information extracted from Fig. 1(a) using (3) 
with$\sigma = 2.0$ , which is determined empirically. It is obvious that Fig. 1(c) offers 
much more reliable information than Fig. 1(b).\\ Since the 2nd derivative is 
orientation-dependent, the contrast information at an image pixel has to be measured along 
various orientations. In the proposed algorithm, we detect boundaries by checking the 
relations between each pixel and its eight neighbors. Hence, four directional operators are 
used at each pixel to measure the curvature information at that pixel. These four 
directions are 0 , 45 , 90 and 135 , respectively. All these four directional contrast data 
are then grouped together in subsequent processes. \section{\small{COLOR CONTRAST IN THE 
CIE LAB COLOR SPACE}} In color image segmentation, a proper choice of color space is also a 
crucial issue. In the selection of color space, we choose the CIE $ L^*a^*b^* $ color space 
to work on due to its three major properties: $1)$ separation of achromatic information 
from chromatic information, $ 2)$ uniform color space, and $ 3) $ similar to human visual 
perception $[12]$. Here,$ L^*$ represents the luminance component, while $ a^* $ and $ b^* 
$ represent color components. The formulae for converting an RGB image into the coordinates 
can be found in many color-related articles, like $[12]$ and $[13]$.\\

\begin{figure}
\centering
\includegraphics[width=2.0in]{Image2}
\caption{Example of the test pattern in the subjective experiment.}
\label{Fig3}
\end{figure}

In the CIE color space, the Euclidean distance between and , defined as $(4)$ is 
approximately equivalent to the perceptual difference between these two colors $[4]$, 
$[12]$. By incorporating this color difference formula into our contrast definition, we 
define the color contrast across an edge as$(5)$ To further explore the correlation between 
color contrast and the luminance level or color level, we made a subjective experiment. In 
our experiment, $10$ observers are involved and the patterns are displayed over a 
calibrated ViewSonic PT775 monitor for comparisons. Here, the values of luminance/color 
contrast are coarsely quantized into eleven steps, 0, 5, 10, 15, …, 50. In

\end{document} 

Tenga en cuenta que tenía figureen lugar de figure*; Es irrelevante qué opciones especifiques, porque figure*solo irá en la parte superior.

Dejé una línea en blanco antes y después de cada uno de los entornos de las figuras. Lo que debes hacer, cuando el documento esté en su forma final en lo que al texto se refiere, es

  • coloque el código en figure*algún lugar entre dos párrafos en la página que precede a donde lo desea

  • Mueva hacia arriba o hacia abajo en el documento los dos figureentornos hasta que estén donde desee.

El segundo punto no debería requerir demasiado trabajo.

ingrese la descripción de la imagen aquí

información relacionada