
그래서 스타일이 마음에 들어서 누군가가 tabularx에서 수행한 테이블을 편집하려고 시도했지만 실제로 무엇을 하고 있는지 전혀 모르기 때문에 문제에 직면하게 되었습니다. 아래 코드에는 'setup' 항목 뒤에 큰 공간이 있습니다. 모든 것이 멋지고 대칭이기를 바랍니다. 공간이 매우 비대칭이 됩니다. 이 공간을 없애는 방법이 있나요?
\documentclass{article}
\usepackage{array}
\usepackage{booktabs}
\usepackage{ragged2e}
\usepackage{tabularx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\newcolumntype{Y}{>{\RaggedRight\arraybackslash}X}
\begin{document}
\noindent
\edef\TabularRowHeight{\the\dimexpr-\arraystretch\baselineskip}
\begin{tabularx}{\textwidth}{YY}
\toprule
Alice & Bob \\
\midrule
\emph{Setup}\\
\cmidrule(lr){1-1}
Alice \& Bob select a prime $p$ and a generator $g$ for the finite field $\mathbb{F}_p$
&\\
&\emph{Private Computation}\\
\cmidrule(lr){2-2}
& Bob randomly selects $b \in \mathbb{F}_p$ and then computes the following:
$B \equiv g^b \mod p$ once computed Bob sends Alice $B$
\\[\TabularRowHeight] & \\
& \emph{Key Computation}\\
\cmidrule(lr){2-2}
& Bob who now has $A$, calculates the following:$A^b \equiv (g^a)^b \equiv g^{ab} \mod p$
\\
\emph{Private Computation}\\
\cmidrule(lr){1-1}
Alice randomly selects $a \in \mathbb{F}_p$ and then computes the following:
$A \equiv g^a \mod p$ once computed Alice sends Bob $A$ & \\ \pagebreak
\emph{Key Computation}\\
\cmidrule(lr){1-1}
Alice who now has $B$, calculates the following:$B^a \equiv (g^b)^a \equiv g^{ab} \mod p$ & \\
\bottomrule
\end{tabularx}
\end{document}
답변1
보여 주신 테이블에서 교대 레이아웃을 제거하는 것이 의미가 없다고 생각하지만 여기에 시도해 보겠습니다.
\documentclass{article}
\usepackage{array}
\usepackage{booktabs}
\usepackage{ragged2e}
\usepackage{tabularx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\newcolumntype{Y}{>{\RaggedRight\arraybackslash}X}
\begin{document}
\emph{Setup}: Alice \& Bob select a prime $p$ and a generator $g$ for the finite field $\mathbb{F}_p$
\begin{tabularx}{\textwidth}{@{}YY@{}}
\toprule
Alice & Bob \\
\midrule
\addlinespace[1.2em]
\emph{Private Computation}:&\\ \addlinespace
% \cmidrule(r){1-1}\cmidrule(l){2-2}
Alice randomly selects $a \in \mathbb{F}_p$ and then computes the following:
$A \equiv g^a \mod p$ once computed Alice sends Bob $A$& Bob randomly selects $b \in \mathbb{F}_p$ and then computes the following:
$B \equiv g^b \mod p$ once computed Bob sends Alice $B$\\\addlinespace[1.2em]
\emph{Key Computation}: &\\ \addlinespace
% \cmidrule(r){1-1}\cmidrule(l){2-2}
Alice who now has $B$, calculates the following:$B^a \equiv (g^b)^a \equiv g^{ab} \mod p$ & Bob who now has $A$, calculates the following:$A^b \equiv (g^a)^b \equiv g^{ab} \mod p$
\\
\bottomrule
\end{tabularx}
\end{document}
대신에 나는 3열 레이아웃을 선호합니다:
\documentclass{article}
\usepackage{array}
\usepackage{booktabs}
\usepackage{ragged2e}
\usepackage{tabularx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\newcolumntype{Y}{>{\RaggedRight\arraybackslash}X}
\begin{document}
\emph{Setup}: Alice \& Bob select a prime $p$ and a generator $g$ for the finite field $\mathbb{F}_p$
\begin{tabularx}{\textwidth}{@{}>{\RaggedRight\arraybackslash}p{2.2cm}YY@{}}
\toprule
& Alice & Bob \\
\midrule
\emph{Private \linebreak Computation} & %
Alice randomly selects $a \in \mathbb{F}_p$ and then computes the following:
$A \equiv g^a \mod p$ once computed Alice sends Bob $A$& Bob randomly selects $b \in \mathbb{F}_p$ and then computes the following:
$B \equiv g^b \mod p$ once computed Bob sends Alice $B$\\\addlinespace
\emph{Key \linebreak Computation} & Alice who now has $B$, calculates the following:$B^a \equiv (g^b)^a \equiv g^{ab} \mod p$ & Bob who now has $A$, calculates the following:$A^b \equiv (g^a)^b \equiv g^{ab} \mod p$
\\
\bottomrule
\end{tabularx}
\end{document}