케이스 환경 내에서 페이지 나누기

케이스 환경 내에서 페이지 나누기

cases환경 내에서 환경을 여러 번 사용하고 align상당히 긴 방정식을 입력하고 있습니다. 이로 인해 제거하고 싶은 공백이 많이 생성됩니다.

cases환경 내에서 페이지 나누기를 수행하는 방법이나 적절한 대안에 대한 제안이 가장 도움이 될 것입니다. 더 구체적으로 말하면, 서문에 \allowdisplaybreaks를 입력해도 케이스 환경이 손상되지 않는다는 것을 알고 있습니다(다음 MWE에서 볼 수 있음).

\documentclass[11pt,a4paper]{amsart}
\allowdisplaybreaks
\usepackage{enumerate,amssymb,amsmath}
\begin{document}

\begin{align*}
&\text{something}\\
&=
\begin{cases}
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
&\text{if A;}\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
&\text{if B.}\\
\end{cases}
\\
&=
\begin{cases}
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
&\text{if A;}\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
&\text{if B.}\\
\end{cases}
\\
&=
\begin{cases}
\displaystyle{+ 
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
&\text{if A;}\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
\\
\displaystyle{+
\sum_{i=1}^{\frac{1}{2}(k-6)}
\frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)}
\binom{\frac{n}{2}}{i}
\binom{\frac{n}{4}}{k-6i-1}v^{k-2i}}
&\text{if B.}\\
\end{cases}
\end{align*}

\end{document}

답변1

이런 상황에서는 근거 있는 해결책을 찾기보다는 표기법을 다시 생각해 보고 싶은 마음이 듭니다 TeX. 페이지를 넘길 수 있는 케이스 같은 환경을 만드는 수단을 찾았다고 해도 결과가 좋지 않고 가독성도 좋지 않을 것입니다. 실제 방정식을 보지 않고 구체적인 제안을 하기는 어렵지만, 표시한 용어가 반복적으로 발생하는 경우 정의하고 싶습니다.

r_{nk} = \frac{n^2-2n(k-3i+6)-4i}{n(2k+7i)},

왜냐하면 이렇게 하면 많은 공간이 절약될 것이기 때문입니다.

답변2

나는 이 질문의 "적절한 대안" 부분에 응답하고 있습니다. 저도 같은 질문을 받았는데, 지금까지 찾을 수 있었던 가장 좋은 답변은 다음 질문에 대한 답변입니다.Tikz - 롱테이블 위에 장식을 오버레이하는 방법

물론 이는 이상적인 것과는 거리가 멀지만 가능한 대안입니다.

관련 정보