
저는 라텍스 소스 파일에서 2열 레이아웃을 사용하고 있으며 표시할 일련의 (부등식) 방정식이 있는데, 이를 왼쪽 열 안에 유지하고 싶었습니다. 그러나 \begin{align*} 환경에서는 방정식이 열을 넘치게 만들고 오른쪽 열에서 추가 공간을 차지하게 됩니다. 여기에 첨부한 사진을 참조하면 무슨 일이 일어나는지 확인할 수 있습니다. 방정식이 첫 번째 열 내에 있도록 어떻게 제한할 수 있나요?
여기 내 라텍스 소스 코드가 있습니다. 여기 시도해 볼 수 있는 MWE가 있습니다.
% \documentclass[conference]{IEEEtran}
\documentclass[10pt,conference,letterpaper]{IEEEtran}
\usepackage{amsmath}
\begin{document}
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
\begin{align*}
& \sum\nolimits_{e \in E^*} COST(g(e))\\
&= \sum\nolimits_{e \in S_1} COST(g(e))
+ \sum\nolimits_{e \in S_2} COST(g(e))
+ \sum\nolimits_{e \in S_3} COST(g(e))\\
&\le
2(1+\epsilon) COST(T^* \setminus T)
+ COST(T^* \cap T)
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 2(1+\epsilon)(COST(T^* \setminus T) + COST(T^* \cap T))
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 2(1+\epsilon)COST(T^*)
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 4(1+\epsilon)OPT_n
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 4+10\epsilon OPT_n
\end{align*}
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
\end{document}
답변1
이것이 가능한 해결책 중 하나입니다. 아래와 같이 resizebox
from graphicx
package 및 콤보를 사용합니다 .parbox
\resizebox{0.48\textwidth}{!}{\parbox{\linewidth}{ math envrionment}}
또는
{\tiny \begin{align*} ... \end{align*} environment}
암호
\documentclass[10pt,conference,letterpaper]{IEEEtran}
\usepackage{amsmath,graphicx}
\begin{document}
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
\resizebox{0.48\textwidth}{!}{\parbox{\linewidth}{
\begin{align*}
& \sum\nolimits_{e \in E^*} COST(g(e))\\
&= \sum\nolimits_{e \in S_1} COST(g(e))
+ \sum\nolimits_{e \in S_2} COST(g(e))
+ \sum\nolimits_{e \in S_3} COST(g(e))\\
&\le
2(1+\epsilon) COST(T^* \setminus T)
+ COST(T^* \cap T)
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 2(1+\epsilon)(COST(T^* \setminus T) + COST(T^* \cap T))
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 2(1+\epsilon)COST(T^*)
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 4(1+\epsilon)OPT_n
+ 4\epsilon OPT_n
+ 2\epsilon OPT_n\\
&\le 4+10\epsilon OPT_n
\end{align*}
}}
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs fsfjslfjslfklsfj
as abcd dsfe fsafs fkasfkds fasf skfsfj safa; ffk sdfksfjsfsjfsdkfsdfkjsf sfsdfkdf sdfks fksfksdfks fkf sdf sf sf sf sfa fs fsdf asf sfs fsf sf sf sf sf sfsd fs
\end{document}
답변2
주변 텍스트에 사용된 글꼴 크기에 비해 수학 표현식에 사용된 글꼴 크기를 줄이는 조치를 취하지 않는 것이 좋습니다. 대신 다음 접근 방식을 추구할 수 있습니다.
\nolimits
각 매크로 뒤에 수정자를 사용하지 마세요\sum
. 대신\sum{...}
표현식을 지시어로 묶으십시오\smashoperator
. 이렇게 하면 합계 기호 전후의 공백 양이 줄어듭니다. ( 매크로는 패키지의 확장(및 로드)인 패키지\smashoperator
에서 제공됩니다 .)mathtools
amsmath
3행과 4행에 추가 줄 바꿈을 삽입합니다.
선택사항: "COST" 및 "OPT"를 로마자(직립) 유형으로 렌더링합니다. 현재 TeX는 COST와 OPT를 4자 및 3자 변수 그룹으로 해석합니다. 즉, as
C
O
S
T
및 asO
P
T
는 느슨하고 차선책인 문자 간 간격을 초래합니다. (변수 이름을 수직 유형이 아닌 기울임꼴로 렌더링하려면 및 를 정의하는 매크로에서\textit
대신 사용하십시오 .)\textup
\COST
\OPT
\begin{align*}
& \smashoperator{\sum_{e \in E^*}} \COST(g(e))\\
&= \smashoperator{\sum_{e \in S_1}} \COST(g(e)) +
\smashoperator{\sum_{e \in S_2}} \COST(g(e)) +
\smashoperator{\sum_{e \in S_3}} \COST(g(e))\\
&\le 2(1+\epsilon) \COST(T^* \setminus T) + \COST(T^* \cap T)\\
&\qquad + 4\epsilon \OPT_n + 2\epsilon \OPT_n\\
&\le 2(1+\epsilon)(\COST(T^* \setminus T) + \COST(T^* \cap T))\\
&\qquad + 4\epsilon \OPT_n + 2\epsilon \OPT_n\\
&\le 2(1+\epsilon)\COST(T^*) + 4\epsilon \OPT_n + 2\epsilon \OPT_n\\
&\le 4(1+\epsilon)\OPT_n + 4\epsilon \OPT_n + 2\epsilon \OPT_n\\
&\le 4+10\eps
일론 \OPT_n \end{align*}