세분화에 대한 질문이 있나요?

세분화에 대한 질문이 있나요?
\documentclass[11pt,paper=a4,answers]{exam}
\usepackage{graphicx,lastpage}
\usepackage{upgreek}
\usepackage{censor}
\censorruledepth=-.2ex
\censorruleheight=.1ex
\hyphenpenalty 10000
\usepackage[paperheight=10.5in,paperwidth=8.27in,bindingoffset=0in,left=0.8in,right=1in,
top=0.7in,bottom=1in,headsep=.5\baselineskip]{geometry}
\flushbottom
\usepackage[normalem]{ulem}
\renewcommand\ULthickness{2pt}   %%---> For changing thickness of underline
\setlength\ULdepth{1.5ex}%\maxdimen ---> For changing depth of underline
\renewcommand{\baselinestretch}{1}
\pagestyle{empty}

\pagestyle{headandfoot}
\headrule
\newcommand{\continuedmessage}{%
\ifcontinuation{\footnotesize Question \ContinuedQuestion\ continues\ldots}{}%
 }
\runningheader{\footnotesize Mathematics}
{\footnotesize Mathematics --- Differential Geometry}
{\footnotesize Page \thepage\ of \numpages}
\footrule
\footer{\footnotesize Student's name:}
{}
{\ifincomplete{\footnotesize Question \IncompleteQuestion\ continues
on the next page\ldots}{\iflastpage{\footnotesize End of exam}{\footnotesize Please go        on to the next page\ldots}}}

\usepackage{cleveref}
\crefname{figure}{figure}{figures}
\crefname{question}{question}{questions}
%==============================================================
\begin{document}

%% \thispagestyle{empty}

\noindent
\begin{minipage}[l]{.1\textwidth}%
\noindent
\includegraphics[width=1.5\textwidth]{vit1}
\end{minipage}
\hfill
\begin{minipage}[r]{.68\textwidth}%
\begin{center}
{\large \bfseries School of Advanced Sciences  \par
\Large VIT UNIVERSITY CHENNAI CAMPUS \\[2pt]
\small Modern Physics {(\small Code: PHY101)}  \par}
%  \vspace{0.5cm}
\end{center}
\end{minipage}
\fbox{\begin{minipage}[l]{.160\textwidth}%
\noindent
{Slot: C1}\\
{\footnotesize {7 Oct 2014}}
\end{minipage}}
\par
\noindent
Dr. Arun Kumar Sarma   \hfill \hfill        Dr. Sanjit Das \\
\noindent
\uline{Time: 1.5 hour   \hfill \normalsize\emph{\bf{CAT II}} \hfill        Maximum Marks: 50}
\begin{questions}

\pointsinrightmargin
\pointsdroppedatright
\marksnotpoints
%\marginpointname{mark}
\pointpoints{mark}{marks}
\pointformat{\boldmath\themarginpoints}
\bracketedpoints
\question[06]
\label{Q:EinAB}
Find relation between spontaneous emmission and absorption
\begin{enumerate}
\item[(a)]
\end{enumerate}
 \droppoints
 \question[10]
 \label{Q:zbus}
 Prove that necessary conditions for the curve $u = u(t), v = v(t)$ on a surface $\vec(r) = \vec(r)(u,v)$ to be geodesic is that \begin{equation}U \frac{\partial T}{\partial \dot{v}} - V    \frac{\partial T}{\partial \dot{u}}\end{equation}
where
$$ U = \frac{d}{dt} \Big(\frac{\partial T}{\partial \dot{u}}\Big) - \frac{\partial T}{\partial u} = \frac{1}{2T}\frac{dT}{dt}\frac{\partial T}{\partial \dot{u}}$$
$$ V = \frac{d}{dt} \Big(\frac{\partial T}{\partial    \dot{v}}\Big) - \frac{\partial T}{\partial v} = \frac{1}{2T}\frac{dT}{dt}\frac{\partial T}{\partial \dot{v}}$$
\droppoints
\question[8]
\label{Q:zbus}
For 
$$
x = a(3u - u^{3}),\qquad y = 3au^{2},\qquad z = a(3u + u^{3})
$$
show that $$\uptau = k  =  \frac{1}{3a(1+u^{2})^{2}}$$
\droppoints
\question[8]
\label{Q:zbus}
 A curve is uniquely determined except as the position in space, when its curvature and            torsion are given functions of its arc length.
\droppoints
\question[8]
\label{Q:zbus}
Show that there exists an infinite family of involutes for a  gives curve.
\droppoints
\newpage
\question[08]
\label{Q:ybus}
Give short answers of the following questions.
\begin{enumerate}
\item Define Helicoids?
\item Define spherical indicatrix?
\item Define the intrinsic equation?
\item Write the statement of existence theorem for space curve?
\item The normal curvature $k_{n}$ is equal to the what?
\item Prove that $L = -n_{1} \cdot r_{1}$ and $N = -n_{2}    \cdot r_{2}$?
\item Define the geodesic?
\item Write down the equation of tangent plane?
\item If equation of the circle is $x^{2} + y^{2} = a^{2}$ then the parametric equations            of circles are \xblackout{forty     two}?
\end{enumerate}
\end{questions}
\begin{center}
\rule{.5\textwidth}{1pt}
\end{center}
\end{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

이 형식의 문제지에서는 처음부터 즉석에서 숫자 세분화를 시도했습니다. 이것이 의미하는 바는 1) (a) ...다음 줄에서 (b)... 그런 식으로 시작한다는 것입니다.

답변1

나는 당신이 part시스템을 설명하고 있다고 믿습니다. 다음을 참조하세요.exam자세한 설명은 문서를 참조하세요. 그 예는 다음과 같습니다.

산출

\documentclass{exam}

\begin{document}
\begin{questions}
\question
Why is there air?

\question
What if there were no air?

\begin{parts}
\part
Describe the effect on the balloon industry.

\part
Describe the effect on the aircraft industry.
\end{parts}

\question
\begin{parts}
\part
Define the universe.  Give three examples.

\part
If the universe were to end, how would you know?
\end{parts}
\end{questions}
\end{document}

관련 정보