
(1). 두 꼭지점에서 두 개의 이등분선을 그려야 하며 두 정점 A
에서 B
교차해야 합니다.P
. (2). 그러나 꼭지점에서 그려지는 다른 이등분선은 다음 C
과 같아야 합니다.종료됨교차하기 전에 P
.
\documentclass[11pt,a4paper]{article}
\usepackage{blindtext}
\usepackage{tikz}
\usepackage{tkz-euclide}
\usetkzobj{all}
\usepackage{color}
\begin{document}
\normalsize{\textbf{Theorem 1.24.} \textit{The bisectors of the angles of a triangle meet in a point which is equally distant from the sides.}}
\begin{center}
\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(12,0){B}
\tkzLabelPoints[below](A)
\tkzLabelPoints[below](B)
\tkzDrawSegment(A,B)
\tkzDefPoint(6,7){C}
\tkzLabelPoints[above](C)
\tkzDrawSegment(A,C)
\tkzDrawSegment(B,C)
\end{tikzpicture}
\end{center}
\end{document}
답변1
\documentclass[11pt,a4paper]{article}
\usepackage{blindtext}
\usepackage{tikz}
\usepackage{tkz-euclide}
\usetkzobj{all}
\usepackage{color}
\begin{document}
\normalsize{\textbf{Theorem 1.24.} \textit{The bisectors of the angles of a triangle meet in a point which is equally distant from the sides.}}
\begin{center}
\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(12,0){B}
\tkzLabelPoints[below](A)
\tkzLabelPoints[below](B)
\tkzDrawSegment(A,B)
\tkzDefPoint(6,7){C}
\tkzLabelPoints[above](C)
\tkzDrawSegment(A,C)
\tkzDrawSegment(B,C)
\tkzDefLine[bisector](C,B,A)
\tkzGetPoint{i}
\tkzDefLine[bisector](B,A,C)
\tkzGetPoint{j}
\tkzInterLL(A,j)(B,i)
\tkzGetPoint{P}
\tkzLabelPoints[below](P)
\tkzDrawBisector(C,B,A)(P)
\tkzDrawBisector(C,A,B)(Q)
\tkzDrawSegment[add=0pt and -30pt](C,P)
\end{tikzpicture}
\end{center}
\end{document}
비고:
변경
-30pt
\tkzDrawSegment[add=0pt and -30pt](C,P)
C
에서 까지의 세그먼트에 대해 원하는 단축을 얻으려면P
.정리에 대한 수동 마크업 대신
amsthm
또는 다음 과 같은 전용 패키지 사용을 고려해야 합니다ntheorem
.amsthm
\documentclass[11pt,a4paper]{article} \usepackage{blindtext} \usepackage{tikz} \usepackage{tkz-euclide} \usetkzobj{all} \usepackage{color} \usepackage{amsthm} \newtheorem{theo}{Theorem} \begin{document} \begin{theo} The bisectors of the angles of a triangle meet in a point which is equally distant from the sides. \end{theo} \begin{center} \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDefPoint(12,0){B} \tkzLabelPoints[below](A) \tkzLabelPoints[below](B) \tkzDrawSegment(A,B) \tkzDefPoint(6,7){C} \tkzLabelPoints[above](C) \tkzDrawSegment(A,C) \tkzDrawSegment(B,C) \tkzDefLine[bisector](C,B,A) \tkzGetPoint{i} \tkzDefLine[bisector](B,A,C) \tkzGetPoint{j} \tkzInterLL(A,j)(B,i) \tkzGetPoint{P} \tkzLabelPoints[below](P) \tkzDrawBisector(C,B,A)(P) \tkzDrawBisector(C,A,B)(Q) \tkzDrawSegment[add=0pt and -30pt](C,P) \end{tikzpicture} \end{center} \end{document}