tcolorbox는 비머의 슬라이드에 희미한 숫자를 남깁니다.

tcolorbox는 비머의 슬라이드에 희미한 숫자를 남깁니다.

beamer와 에서의 첫 주입니다 tcolorbox. 나는 최근 beamer학급 과 함께 슬라이드 프레젠테이션을 준비했습니다 tcolorbox. 프로그램은 잘 작동하지만 약간의 문제가 있습니다. tcolorbox각 슬라이드 뒤에 번호가 희미하게 표시됩니다. 내가 이걸 막을 수 있을 거라고 생각하는 거야? 다음은 최소한의 작업 예입니다.

\documentclass[slides]{beamer}
%\documentclass[a4wide,8pt]{extarticle}
\mode<presentation>{}

%Define usepackages
\usetheme{default}
\usepackage[utf8]{inputenc}
\usepackage{amsfonts}
\usepackage{graphicx}                                   % for pdf, bitmapped graphics files
\usepackage{times}                                       % assumes new font selection scheme installed
\usepackage{amsmath}                                    %assumes amsmath package installed
\usepackage{amssymb} 
\usepackage{amsfonts}                                    % assumes amsmath package installed
\usepackage{color}

\usepackage{commath}

\usepackage{breqn}

\usepackage{tcolorbox}

\usepackage{hyperref}
\usepackage{xcolor}\hypersetup{linkbordercolor=green}



%Define colors
\definecolor{blue}{rgb}{0,0,1}  



% %preamble and title page
    \setbeamersize{text margin left = 0.2mm}
    \setbeamersize{text margin right = 0.2mm}
    \setbeamersize{sidebar width left= 0.3mm}
    \setbeamersize{sidebar width right= 0.3mm}

    \setbeamertemplate{itemize item}[triangle]
    \setbeamertemplate{itemize subitem}[triangle]


%\setbeamercovered{transparent}
%\setbeamertemplate{navigation symbols}{}
%\setbeamertemplate{headline}


\tcbuselibrary{skins,breakable}

% Color Box layers
\tcbset{colframe=blue!75!black,fonttitle=\bfseries,
    colback=green!5!white,
    every box/.style={enhanced,watermark text=\thetcblayer,
        before=\par\smallskip,after=\par\smallskip},
    every box on layer 2/.style={reset,every box,colback=yellow!10!white,
        drop fuzzy shadow}}

% Newt Color Box
\newtcolorbox{pabox}[1]{colback=red!5!white,
    colframe=green!75!black,fonttitle=\bfseries,
    title=#1}

%My green box
\newtcolorbox{mygreenbox}[2][]{%
    enhanced,width=\linewidth-6pt,
    enlarge top by=3pt,enlarge bottom by=3pt,
    enlarge left by=3pt,enlarge right by=3pt,
    title={#2},frame hidden,boxrule=0pt,top=1mm,bottom=1mm,
    colframe=green!30!black, colbacktitle=green!50!yellow,
    coltitle=black, colback=green!25!white,
    borderline={0.5pt}{-0.5pt}{green!75!blue},
    borderline={1pt}{-3pt}{green!50!blue},#1}


\begin{document}

\long\def\/*#1*/{}                              % Define block comment
    % This starts Page 3
    \begin{frame}{\color{cyan}\small Non-Lipschitzian Dynamics of a Continuous FTS Feedback Controller}

        \begin{tcolorbox}[title = \small Overview of Problem]
            \begin{itemize}
            \item\tiny\color{blue}  The design of FTS continuous time-invariant feedback controllers involve non-Lipschitzian closed-loop dynamics
            \item Such controllers will exhibit non-unique solutions in backward time, i.e.,  better robustness and good disturbance rejection
            \item Such non-unique (revert time) solutions would violate uniqueness conditions for Lipschitz differential equations
            \end{itemize}


        \begin{pabox}{\small Statement of Problem}
            \begin{itemize}
                \item\tiny\color{blue}  Consider a rigid body rotating under the action of a mechanical torque about a fixed axis
                \item Its equations of motion resemble those of a double integrator. States differ by $2n\pi$ (where $n = 0, 1, 2, \hdots$) in angular modes which correspond to the same physical configuration of the body.
                \item State space for this system is $S^1 \times \mathbb{R}$ rather than $ \mathbb{R}^2$ \cite{Andronov}
                \item Developing stabilizing controls for the double integrator on $ \mathbb{R}^2$ (translational double integrator) will lead to unwinding since the configuration space is actually $ \mathbb{R}$
                \item  This makes an interesting problem when designing feedback controllers for the rotational double integrator with anti-wind-up compensation
                \item Discontinuous feedback controllers are practically infeasible due to the chattering they introduce because of plant uncertainties
                \item They could also excite high-frequency dynamics when used in controlling lightly damped structures \cite{Baruh et. al.}
            \end{itemize}
        \end{pabox}

    \end{tcolorbox}

\end{frame}
\end{document}

다음은 바람직하지 않은 배경 번호가 포함된 출력입니다.여기에 이미지 설명을 입력하세요

답변1

그만큼기분을 상하게 하는코드는

\tcbset{colframe=blue!75!black,fonttitle=\bfseries,
    colback=green!5!white,
    every box/.style={enhanced,%watermark text=\thetcblayer,
        before=\par\smallskip,after=\par\smallskip},
    every box on layer 2/.style={reset,every box,colback=yellow!10!white,
        drop fuzzy shadow}}

watermark text=\thetcblayer, 배경에 워터마크가 있음을 의미합니다. 이 경우에는 tcolorbox 레이어 번호입니다. 이를 원하지 않는 경우 제거해야 합니다.

\documentclass[slides]{beamer}
%\documentclass[a4wide,8pt]{extarticle}
\mode<presentation>{}

%Define usepackages
\usetheme{default}
\usepackage[utf8]{inputenc}
\usepackage{amsfonts}
\usepackage{graphicx}                                   % for pdf, bitmapped graphics files
\usepackage{times}                                       % assumes new font selection scheme installed
\usepackage{amsmath}                                    %assumes amsmath package installed
\usepackage{amssymb} 
\usepackage{amsfonts}                                    % assumes amsmath package installed
%\usepackage{color}

\usepackage{commath}

\usepackage{breqn}

\usepackage{tcolorbox}

\usepackage{hyperref}
\hypersetup{linkbordercolor=green}



%Define colors
%\definecolor{blue}{rgb}{0,0,1}  



% %preamble and title page
\setbeamersize{text margin left = 0.2mm}
\setbeamersize{text margin right = 0.2mm}
\setbeamersize{sidebar width left= 0.3mm}
\setbeamersize{sidebar width right= 0.3mm}

\setbeamertemplate{itemize item}[triangle]
\setbeamertemplate{itemize subitem}[triangle]


%\setbeamercovered{transparent}
%\setbeamertemplate{navigation symbols}{}
%\setbeamertemplate{headline}


\tcbuselibrary{skins,breakable}

% Color Box layers
\tcbset{colframe=blue!75!black,fonttitle=\bfseries,
    colback=green!5!white,
    every box/.style={enhanced,%watermark text=\thetcblayer,
        before=\par\smallskip,after=\par\smallskip},
    every box on layer 2/.style={reset,every box,colback=yellow!10!white,
        drop fuzzy shadow}}

% Newt Color Box
\newtcolorbox{pabox}[1]{colback=red!5!white,
    colframe=green!75!black,fonttitle=\bfseries,
    title=#1}

%My green box
\newtcolorbox{mygreenbox}[2][]{%
    enhanced,width=\linewidth-6pt,
    enlarge top by=3pt,enlarge bottom by=3pt,
    enlarge left by=3pt,enlarge right by=3pt,
    title={#2},frame hidden,boxrule=0pt,top=1mm,bottom=1mm,
    colframe=green!30!black, colbacktitle=green!50!yellow,
    coltitle=black, colback=green!25!white,
    borderline={0.5pt}{-0.5pt}{green!75!blue},
    borderline={1pt}{-3pt}{green!50!blue},#1}


\begin{document}

\long\def\/*#1*/{}                              % Define block comment
    % This starts Page 3
    \begin{frame}{\textcolor{cyan}{\small Non-Lipschitzian Dynamics of a Continuous FTS Feedback Controller}}

        \begin{tcolorbox}[title = \small Overview of Problem]
            \begin{itemize}
            \item\tiny\color{blue}  The design of FTS continuous time-invariant feedback controllers involve non-Lipschitzian closed-loop dynamics
            \item Such controllers will exhibit non-unique solutions in backward time, i.e.,  better robustness and good disturbance rejection
            \item Such non-unique (revert time) solutions would violate uniqueness conditions for Lipschitz differential equations
            \end{itemize}


        \begin{pabox}{\small Statement of Problem}
            \begin{itemize}
                \item\tiny\color{blue}  Consider a rigid body rotating under the action of a mechanical torque about a fixed axis
                \item Its equations of motion resemble those of a double integrator. States differ by $2n\pi$ (where $n = 0, 1, 2, \hdots$) in angular modes which correspond to the same physical configuration of the body.
                \item State space for this system is $S^1 \times \mathbb{R}$ rather than $ \mathbb{R}^2$ \cite{Andronov}
                \item Developing stabilizing controls for the double integrator on $ \mathbb{R}^2$ (translational double integrator) will lead to unwinding since the configuration space is actually $ \mathbb{R}$
                \item  This makes an interesting problem when designing feedback controllers for the rotational double integrator with anti-wind-up compensation
                \item Discontinuous feedback controllers are practically infeasible due to the chattering they introduce because of plant uncertainties
                \item They could also excite high-frequency dynamics when used in controlling lightly damped structures \cite{Baruh et. al.}
            \end{itemize}
        \end{pabox}

    \end{tcolorbox}

\end{frame}
\end{document}

편집하다

일부 불필요한 코드/문장을 제거했습니다. 예를 들어 이미 잘 알려진 색상이므로 및 \usepackage{xcolor}에 의해 로드되었기 때문 입니다 .tcolorbox\definecolor{blue}blue

성명 \color{cyan}은 다음과 같이 변경되었습니다.\textcolor{cyan}{...}

여기에 이미지 설명을 입력하세요

관련 정보