참조가 첫 번째 프레임에 나타나지 않습니다.

참조가 첫 번째 프레임에 나타나지 않습니다.

저는 Beamer를 사용하여 프레젠테이션을 준비하고 있습니다. 파일을 실행하는 동안 출력에서 ​​특히 참조 프레임(93개의 참조가 있음)의 첫 번째 프레임에서 참조 1이 나타나고 2,3,4가 사라지고 참조 5부터 93까지 모든 프레임에 계속 나타납니다. 이에 대한 해결책을 알려주십시오.

저는 아래와 같은 코드를 사용하고 있습니다.

\begin{frame}[allowframebreaks]{}
\textbf{References:}
\begin{enumerate}

\bibitem{1Aki}
J. Akiyama, T. Hamada, I. Yoshimura, On characterizations of the middle graphs, TRU Mathematics 11 (1975) pp, 35-39.

\bibitem{2Alsp}
B. Alspach, C.C.Chen, Kevin McAvaney, On a class of Hamiltonian laceable 3-regular graphs, Disc. Math. 151 (1996) pp 19-38.

\bibitem{3Alsp}
B. Alspach, C.Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), pp 101-108.

\bibitem{4Anad}
B.S. Anand, M. Changat, S. Klavzar, I. Peterin, Convex sets in lexicographic products of graphs, Graphs Combin. 28 (2012), 77-84.

\bibitem{5Basa}
M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number of graph power and graph products,  arXiv:1104.4190v1 [math.co] (2011).

\bibitem{6Beh}
M. Behzad, G Chartrand, Total graphs and traversability, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), pp 117-120.

\end{enumerate}
\end{frame}   

전체 예:

\documentclass[10pt]{beamer}
\usepackage{hyperref,times,graphicx,setspace}
\mode<presentation>
   {
    \usetheme{Warsaw}
%  \setbeamercovered{transparent}
    }
\usepackage{epsfig}
\usepackage[english]{babel}
%\usepackage[latin1]{inputenc}
%\usepackage{times}
%\usepackage[T1]{fontenc}
\usepackage{color}
\usepackage{pst-node}
\usepackage{epsfig,amsmath,amsthm,latexsym,amssymb,amsgen,graphicx}
\usepackage{amsthm}
\usepackage{beamerthemesplit}

\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}[thm]{Lemma}
\newtheorem{cor}[thm]{Corollary}
\theoremstyle{definition}
\newtheorem{defn}[thm]{Definition}
\newtheorem{eg}[thm]{Example}
\newtheorem{ex}[thm]{Exercise}
\newtheorem{prob}{Problem}
\newtheorem{ob}[thm]{Observation}
\newtheorem{rk}[thm]{Remark}
\newtheorem{ill}{Illustration}
\newtheorem{con}{Conjecture}
\newtheorem{prop}{Proposition}
\theoremstyle{remark}
\newtheorem*{pf}{Proof}
\newtheorem*{pfc}{Proof ctd...}
\numberwithin{equation}{section}
%\newenvironment{daln}{$\arraycolsep=.2ex\begin{array}[t]{rl}}%
%{\end{array}$}
\setlength{\unitlength}{0.1mm}
\renewcommand{\baselinestretch}{1.2}

\title[XXXXXX]
{\it{\bf{XXXXXXXX}}}



\author[K.SRINIVASA RAO] % (optional, use only with lots of authors)
{ K.SRINIVASA RAO}
\institute[]
{\\RESEARCH GUIDE \vskip .5cm
{\large XXXX}


\subject{Ph.D Viva-Voce}



\beamerdefaultoverlayspecification{<+->}

\date{--- --,--}



\begin{document}


\begin{frame}[allowframebreaks]{}
\textbf{References:}
\begin{enumerate}

\bibitem{1Aki}
J. Akiyama, T. Hamada, I. Yoshimura, On characterizations of the middle graphs, TRU Mathematics 11 (1975) pp, 35-39.

\bibitem{2Alsp}
B. Alspach, C.C.Chen, Kevin McAvaney, On a class of Hamiltonian laceable 3-regular graphs, Disc. Math. 151 (1996) pp 19-38.

\bibitem{3Alsp}
B. Alspach, C.Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), pp 101-108.

\bibitem{4Anad}
B.S. Anand, M. Changat, S. Klavzar, I. Peterin, Convex sets in lexicographic products of graphs, Graphs Combin. 28 (2012), 77-84.

\bibitem{5Basa}
M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number of graph power and graph products,  arXiv:1104.4190v1 [math.co] (2011).

\bibitem{6Beh}
M. Behzad, G Chartrand, Total graphs and traversability, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), pp 117-120.

\bibitem{7Beh}
M. Behzad, A criterion for the planarity of the total graph of a graph, Proc. Cambridge Philos. Soc. 63 (1967), pp 679-681.

\bibitem{8Beh}
M. Behzad, The connectivity of total graphs, Austr. Math. Bull. 1 (1969), pp 175-181.

\bibitem{9Beh}
M. Behzad, a characterization of total graphs, Amer. Math. Soc. 26 (3), (1970), pp 383-389.

\bibitem{10Benk}
Beineke, Derived graphs and digraphs. Beiträge zur Graphentheorie (H. Sachs, H. Voss, and H. Walther, eds.) Teubner, Leipzig 1968, pp 17-33.

\bibitem{11Berm}
J.C. Bermond, N. Homobono, C. Peyrat, Connectivity of Kautz networks, Disc. Math. 114 (1993), pp 51-62.


\end{frame}
\end{document} 

답변1

핵심 문제는 \beamerdefaultoverlayspecification{<+->}그냥 제거하는 것입니다.

몇 가지 사소한 문제/의견:

  • 비머가 필요 하지 않습니다 hyperref.graphicxcolor
  • 같은 패키지를 여러 번 로드하지 마세요(예 times: graphicx, amsthm등).
  • }연수회가 끝나면 실종됨
  • 없어진\end{enumerate}

\documentclass[10pt]{beamer}

\usetheme{Warsaw}
\usepackage{beamerthemesplit}
\setbeamercovered{transparent}
\usepackage[english]{babel}


%\beamerdefaultoverlayspecification{<+->}

\setbeamertemplate{frametitle continuation}{}

\begin{document}

\begin{frame}[allowframebreaks]
  \frametitle{References:}
  \begin{enumerate}
        \bibitem{1Aki}
        J. Akiyama, T. Hamada, I. Yoshimura, On characterizations of the middle graphs, TRU Mathematics 11 (1975) pp, 35-39.

        \bibitem{2Alsp}
        B. Alspach, C.C.Chen, Kevin McAvaney, On a class of Hamiltonian laceable 3-regular graphs, Disc. Math. 151 (1996) pp 19-38.

        \bibitem{3Alsp}
        B. Alspach, C.Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), pp 101-108.

        \bibitem{4Anad}
        B.S. Anand, M. Changat, S. Klavzar, I. Peterin, Convex sets in lexicographic products of graphs, Graphs Combin. 28 (2012), 77-84.

        \bibitem{5Basa}
        M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number of graph power and graph products,  arXiv:1104.4190v1 [math.co] (2011).

        \bibitem{6Beh}
        M. Behzad, G Chartrand, Total graphs and traversability, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), pp 117-120.

        \bibitem{7Beh}
        M. Behzad, A criterion for the planarity of the total graph of a graph, Proc. Cambridge Philos. Soc. 63 (1967), pp 679-681.

        \bibitem{8Beh}
        M. Behzad, The connectivity of total graphs, Austr. Math. Bull. 1 (1969), pp 175-181.

        \bibitem{9Beh}
        M. Behzad, a characterization of total graphs, Amer. Math. Soc. 26 (3), (1970), pp 383-389.

        \bibitem{10Benk}
        Beineke, Derived graphs and digraphs. Beiträge zur Graphentheorie (H. Sachs, H. Voss, and H. Walther, eds.) Teubner, Leipzig 1968, pp 17-33.

        \bibitem{11Berm}
        J.C. Bermond, N. Homobono, C. Peyrat, Connectivity of Kautz networks, Disc. Math. 114 (1993), pp 51-62.
    \end{enumerate}
\end{frame}

\end{document} 

여기에 이미지 설명을 입력하세요

관련 정보