이 방정식은 페이지 외부에 있습니다. 수정하는 방법

이 방정식은 페이지 외부에 있습니다. 수정하는 방법
\documentclass{article}
\usepackage{amsmath}
\begin{document}

\begin{equation*}
\partial_t u(t,x)=\left\{
\begin{array}{l l}
\displaystyle{\left(\partial_t \xi^t(x)R'(\xi^t(x))-\partial_x G(t,x)R(\xi^t(x)\right)\exp\left(-\int_{\xi^t(x)}^t\partial_x G(s,\Phi_{(t,x)}(s))\,\mbox{d}s\right)},&(t,x)\in \Omega_1\\
\displaystyle{\left(\partial_t\chi^t(x)u'_0(\chi^t(x))-u_0(\chi^t(x)\partial_x G(t,x)\right)\exp\left(-\int_{t_0}^t\partial_xG(s,\Phi_{(t,x)}(s))\,\mbox{d}s\right)},&(t,x)\in \Omega_2\\
0,&(t,x)\in\Omega_3
\end{array}
\right.
\end{equation*}
\begin{equation*}
\partial_x(Gu)(t,x)=\left\{
\begin{array}{l l}
\displaystyle{\left(\partial_xG(t,x)R(\xi^t(x))+ G(t,x)\partial_x\xi^t(x)R'(\xi^t(x))\right)\exp\left(-\int_{\xi^t(x)}^t\partial_x G(s,\Phi_{(t,x)}(s))\,\mbox{d}s\right)},&(t,x)\in \Omega_1\\
\displaystyle{\left(\partial_xG(t,x)u_0(\chi^t(x))+G(t,x)\partial_x\chi^t(x)u'_0(\chi^t(x))\right)\exp\left(-\int_{t_0}^t\partial_xG(s,\Phi_{(t,x)}(s))\,\mbox{d}s\right)},&(t,x)\in \Omega_2\\
0,&(t,x)\in\Omega_3
\end{array}
\right.
\end{equation*}

\end{document}

여기에 이미지 설명을 입력하세요

답변1

각 줄에 긴 공통 표현이 있으므로 이름을 지정하는 것이 좋습니다.

여기에 이미지 설명을 입력하세요

다음은 코드입니다( 사용 dcases).

\documentclass{article}

\usepackage{mathtools} % for \shortintertext and \dcases

\begin{document}

For clarity, let us define
\[
E(a)=\exp\biggl(-\int_a^t\partial_x G(s,\Phi_{(t,x)}(s))\,\mathrm{d}s\biggr).
\]
Then we have
\begin{align*}
\partial_t &u(t,x)=\\
&\begin{dcases}
\bigl(\partial_t \xi^t(x)R'(\xi^t(x))-\partial_x G(t,x)R(\xi^t(x)\bigr)E\bigl(\xi^t(x)\bigr),&(t,x)\in \Omega_1\\
\bigl(\partial_t\chi^t(x)u'_0(\chi^t(x))-u_0(\chi^t(x)\partial_x G(t,x)\bigr)E(t_0),&(t,x)\in \Omega_2\\
0,&(t,x)\in\Omega_3
\end{dcases}\\
\shortintertext{and}
\partial_x&(Gu)(t,x)=\\
&\begin{dcases}
\bigl(\partial_xG(t,x)R(\xi^t(x))+ G(t,x)\partial_x\xi^t(x)R'(\xi^t(x))\bigr)E\bigl(\xi^t(x)\bigr),&(t,x)\in \Omega_1\\
\bigl(\partial_xG(t,x)u_0(\chi^t(x))+G(t,x)\partial_x\chi^t(x)u'_0(\chi^t(x))\bigr)E(t_0),&(t,x)\in \Omega_2\\
0,&(t,x)\in\Omega_3
\end{dcases}
\end{align*}

\end{document}

답변2

기본적으로 해당 수식을 표준 텍스트 너비에 맞출 기회는 없습니다.

큰 방정식을 분할할 수 있습니다. 두 가지 다른 정렬 방법을 보여 드리겠습니다.

\documentclass{article}
\usepackage{amsmath,mathtools}

\newcommand{\diff}{\mathop{}\!\mathrm{d}}

\begin{document}

\begin{equation*}
\partial_t u(t,x)=
\begin{dcases}
\begin{aligned}[b]
  &\bigl(\partial_t \xi^t(x)R'(\xi^t(x))-\partial_x G(t,x)R(\xi^t(x)\bigr) \\
  &\qquad\cdot
   \exp\biggl(-\int_{\xi^t(x)}^t\partial_x G(s,\Phi_{(t,x)}(s))\diff s\biggr),
\end{aligned}
  &(t,x)\in \Omega_1\\[1.5ex]
\begin{aligned}[b]
  &\bigl(\partial_t\chi^t(x)u'_0(\chi^t(x))-u_0(\chi^t(x)\partial_x G(t,x)\bigr) \\
  &\qquad\cdot
   \exp\biggl(-\int_{t_0}^t\partial_xG(s,\Phi_{(t,x)}(s))\diff s\biggr),
\end{aligned}
  &(t,x)\in \Omega_2\\[1.5ex]
0,&(t,x)\in\Omega_3
\end{dcases}
\end{equation*}

\begin{equation*}
\partial_t u(t,x)=
\begin{dcases}
\begin{aligned}[b]
  \bigl(\partial_t \xi^t(x)R'(\xi^t(x))-\partial_x G(t,x)R(\xi^t(x)\bigr) \\
  \cdot
   \exp\biggl(-\int_{\xi^t(x)}^t\partial_x G(s,\Phi_{(t,x)}(s))\diff s\biggr)&,
\end{aligned}
  &(t,x)\in \Omega_1\\[1.5ex]
\begin{aligned}[b]
  \bigl(\partial_t\chi^t(x)u'_0(\chi^t(x))-u_0(\chi^t(x)\partial_x G(t,x)\bigr) \\
  \cdot
   \exp\biggl(-\int_{t_0}^t\partial_xG(s,\Phi_{(t,x)}(s))\diff s\biggr)&,
\end{aligned}
  &(t,x)\in \Omega_2\\[1.5ex]
0,&(t,x)\in\Omega_3
\end{dcases}
\end{equation*}

\end{document}

여기에 이미지 설명을 입력하세요

및 를 dcases사용하여 서투른 구성을 피 하십시오 .array\displaystyle

또한 \mbox{d}(직립) 차동 기호를 얻는 가장 좋은 방법은 아닙니다. 를 사용 \mathrm{d}하지만 명령을 사용하는 더 나은 방법도 제안합니다 \diff.

답변3

한 가지 가능성은...

\documentclass{article}
\usepackage{amsmath}
\usepackage{tabstackengine}
\TABstackMath
\TABstackMathstyle{\displaystyle}
\renewcommand\stacktype{L}
\renewcommand\stackalignment{r}
\setstackgap{L}{24pt}
\begin{document}

\begin{equation*}
\partial_t u(t,x)=\left\{
\begin{array}{l l}
\tabbedstackanchor{\bigl(\partial_t \xi^t(x)R'(\xi^t(x))-\partial_x 
G(t,x)R(\xi^t(x)\bigr)\times}{\exp\left(-\int_{\xi^t(x)}^t\partial_x 
G(s,\Phi_{(t,x)}(s))\,\mbox{d}s\right)\quad},&(t,x)\in \Omega_1\\[30pt]
\tabbedstackanchor{\bigl(\partial_t\chi^t(x)u'_0(\chi^t(x))-u_0(\chi^t(x)
\partial_x G(t,x)\bigr)\times}{\exp\left(-\int_{t_0}^t\partial_xG(s,
\Phi_{(t,x)}(s))\,\mbox{d}s\right)\quad },&(t,x)\in \Omega_2\\[24pt]
0,&(t,x)\in\Omega_3
\end{array}
\right.
\end{equation*}
\begin{equation*}
\partial_x(Gu)(t,x)=\left\{
\begin{array}{l l}
\tabbedstackanchor{\bigl(\partial_xG(t,x)R(\xi^t(x))+G(t,x)\partial_x
\xi^t(x)R'(\xi^t(x))\bigr)\times}{\exp\left(-\int_{\xi^t(x)}^t\partial_x 
G(s,\Phi_{(t,x)}(s))\,\mbox{d}s\right)\quad },&(t,x)\in \Omega_1\\[30pt]
\tabbedstackanchor{\bigl(\partial_xG(t,x)u_0(\chi^t(x))+G(t,x)\partial_x
\chi^t(x)u'_0(\chi^t(x))\bigr)\times}{\exp\left(-\int_{t_0}^t\partial_xG
(s,\Phi_{(t,x)}(s))\,\mbox{d}s\right)\quad },&(t,x)\in \Omega_2\\[24pt]
0,&(t,x)\in\Omega_3
\end{array}
\right.
\end{equation*}
\end{document}

여기에 이미지 설명을 입력하세요

또는 Dalif가 제안한 것처럼

\documentclass{article}
\usepackage{amsmath}
\usepackage{tabstackengine}
\TABstackMath
\TABstackMathstyle{\displaystyle}
\renewcommand\stacktype{L}
\renewcommand\stackalignment{l}
\setstackgap{L}{24pt}
\begin{document}

\begin{equation*}
\partial_t u(t,x)=\left\{
\begin{array}{l l}
\tabbedstackanchor{\bigl(\partial_t \xi^t(x)R'(\xi^t(x))-\partial_x 
G(t,x)R(\xi^t(x)\bigr)}{\quad\times\exp\left(-\int_{\xi^t(x)}^t\partial_x 
G(s,\Phi_{(t,x)}(s))\,\mbox{d}s\right)},&(t,x)\in \Omega_1\\[30pt]
\tabbedstackanchor{\bigl(\partial_t\chi^t(x)u'_0(\chi^t(x))-u_0(\chi^t(x)
\partial_x G(t,x)\bigr)}{\quad\times\exp\left(-\int_{t_0}^t\partial_xG(s,
\Phi_{(t,x)}(s))\,\mbox{d}s\right) },&(t,x)\in \Omega_2\\[24pt]
0,&(t,x)\in\Omega_3
\end{array}
\right.
\end{equation*}
\begin{equation*}
\partial_x(Gu)(t,x)=\left\{
\begin{array}{l l}
\tabbedstackanchor{\bigl(\partial_xG(t,x)R(\xi^t(x))+G(t,x)\partial_x
\xi^t(x)R'(\xi^t(x))\bigr)}{\qquad\times\exp\left(-\int_{\xi^t(x)}^t\partial_x 
G(s,\Phi_{(t,x)}(s))\,\mbox{d}s\right) },&(t,x)\in \Omega_1\\[30pt]
\tabbedstackanchor{\bigl(\partial_xG(t,x)u_0(\chi^t(x))+G(t,x)\partial_x
\chi^t(x)u'_0(\chi^t(x))\bigr)}{\qquad\times\exp\left(-\int_{t_0}^t\partial_xG
(s,\Phi_{(t,x)}(s))\,\mbox{d}s\right) },&(t,x)\in \Omega_2\\[24pt]
0,&(t,x)\in\Omega_3
\end{array}
\right.
\end{equation*}
\end{document}

여기에 이미지 설명을 입력하세요

관련 정보