서로 다른 축을 따라 여러 분할 방정식 정렬

서로 다른 축을 따라 여러 분할 방정식 정렬

두 축을 따라 정렬하려는 파생 상품이 있습니다. 첫 번째는 페이지의 왼쪽 테두리로 간주될 수 있으며 \partial/x..=는 와 정렬되어야 합니다 cases.

두 번째 축은 오른쪽에 있습니다. 여기서는 모든 방정식에 대해 같음/같음이 정렬되어야 합니다. 어떻게 할 수 있는지 아이디어가 있나요?

내 MWE는 다음과 같습니다.

\documentclass[11pt,oneside,a4paper]{article}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
\begin{document}
\begin{align}
\begin{split}
&\frac{\partial K(QB,QD,KoA)}{\partial QD} =  \\
&\begin{cases}
\frac{QB QD e^{\frac{KoA}{QD}+\frac{KoA}{QB}} -QBQD(e^{\frac{KoA}{QB}}-e^{\frac{KoA}{QD}})+QBKoA e^{\frac{KoA}{QD}}}{QD(QD e^{\frac{KoA}{QB}}-QB e^{\frac{KoA}{QD}})^2} 
&\forall ~QB\ne QD\\
\frac{KoA^2}{2(QD+KoA)^2}
&\forall ~QB= QD
\end{cases} \label{e:dkdqd}
\end{split} 
\\
\begin{split}
&\frac{\partial K(QB,QD,KoA)}{\partial KoA} = \\
&\begin{cases}\frac{(QD-QB)^2e^{\frac{KoA}{QD}+\frac{KoA}{QB}}}{(QBe^{KoA/QD}-QDe^{KoA/QB})^2} 
&\forall ~QB \neq QD\\
\frac{QD^2}{(QD+KoA)^2} 
&\forall ~QB = QD \label{e:dkdkoa}
\end{cases} 
\end{split}
\\
\begin{split}
& \frac{\partial K(QB,QD,KoA)}{\partial QB}= \\ 
& \begin{cases} \frac{(de^{k/b}(dbe^{k/b}+(k-d)e^{k/d}b-dke^{k/d}))}{(b(de^{k/b}-e^{k/d}b)^2)} 
&\forall ~QB \neq QD\\\
k^2/(2(d + k)^2)
&\forall ~QB= QD
\end{cases}
\end{split}
\label{e:dkdqb}
\end{align}
\end{document}

여기에 이미지 설명을 입력하세요

답변1

귀하의 요구 사항에 따라 다음과 같이 제안합니다. 1. tabular환경 사용 2. parbox방정식에 대한 컨테이너 만들기 3. eqnarray방정식에 대한 링크 만들기에 사용

이상적이고 깨지기 쉬운 것과는 거리가 멀다

\documentclass[11pt,oneside,a4paper]{article}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
\usepackage{eqnarray}
\begin{document}
\begin{tabular}{ll}
\parbox{4cm}{$$\frac{\partial K(QB,QD,KoA)}{\partial QD} =$$} & \\
\parbox{9cm}{$$\begin{cases}\frac{QB QD e^{\frac{KoA}{QD}+\frac{KoA}{QB}} -QBQD(e^{\frac{KoA}{QB}}-e^{\frac{KoA}{QD}})+QBKoA e^{\frac{KoA}{QD}}}{QD(QD e^{\frac{KoA}{QB}}-QB e^{\frac{KoA}{QD}})^2}\\ \frac{KoA^2}{2(QD+KoA)^2}\end{cases}$$} &
\parbox{3cm}{\begin{eqnarray}
    \forall ~QB\ne QD\\ \forall ~QB= QD\notag
    \label{e:dkdqd}\end{eqnarray}}\\
\parbox{4cm}{$$\frac{\partial K(QB,QD,KoA)}{\partial KoA} = $$} & \\
\parbox{5cm}{$$\begin{cases}\frac{(QD-QB)^2e^{\frac{KoA}{QD}+\frac{KoA}{QB}}}{(QBe^{KoA/QD}-QDe^{KoA/QB})^2}\\ \frac{QD^2}{(QD+KoA)^2}\end{cases}$$} &
\parbox{3cm}{\begin{eqnarray}
    \forall ~QB \neq QD\\ \forall ~QB = QD\notag
    \label{e:dkdkoa}\end{eqnarray}}\\
\parbox{4cm}{$$\frac{\partial K(QB,QD,KoA)}{\partial QB}=$$} & \\
\parbox{5cm}{$$\begin{cases}\frac{(de^{k/b}(dbe^{k/b}+(k-d)e^{k/d}b-dke^{k/d}))}{(b(de^{k/b}-e^{k/d}b)^2)} \\
k^2/(2(d + k)^2)\end{cases}$$} &
\parbox{3cm}{\begin{eqnarray}
    \forall ~QB \neq QD\\ \forall ~QB= QD\notag
    \label{e:dkdqb}\end{eqnarray}}\\
\end{tabular}
\end{document}

귀하의 기대에 부응합니까?

여기에 이미지 설명을 입력하세요

관련 정보