
다음과 같이 수학 방정식을 입력하고 싶습니다.
하지만 이 코드로는 위와 같은 결과를 얻을 수 없습니다. 위의 결과를 얻기 위해 내 코드를 편집하는 데 도움을 줄 수 있는 사람이 있나요?
\documentclass{book}
\usepackage{amsmath}
\begin{document}
\begin{align}
u_j^{n+1}&=u_j^{n}-a(t_n)\Delta t \dfrac{\partial u}{\partial x}
+\dfrac{(\Delta t)^2}{2}\left(a(t_n)^2\dfrac{\partial^2 u}{\partial x^2}-\dfrac{da(t_n)}{dt}\dfrac{\partial u}{\partial x}\right)\nonumber\\
&=u_j^{n}-a(t_n)\Delta t \dfrac{\partial u}{\partial x}
+a(t_n)^2\dfrac{(\Delta t)^2}{2}\dfrac{\partial^2 u}{\partial x^2}-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{2}\dfrac{\partial u}{\partial x}\nonumber\\
&=u_j^{n}-a(t_n)\Delta t \left(\dfrac{u_{j+1}^{n}-u_{j-1}^{n}}{2\Delta x}\right)+a(t_n)^2\dfrac{(\Delta t)^2}{2}\left(\dfrac{u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}}{(\Delta x)^2}\right)\nonumber\\
%%%%%%%%%%%%%%%%%%%%%%
&-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{2}\left(\dfrac{u_{j+1}^{n}-u_{j-1}^{n}}{2\Delta x}\right)\nonumber\\
\begin{aligned}
&= u_j^{n}-\dfrac{1}{2}\nu_n\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
+\dfrac{1}{2}\nu_n^2 \left(u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}\right)
-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{4\Delta x}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
\end{aligned}
\end{align}
\end{document}
답변1
방정식 번호가 중앙에 있는 경우에는 대신 equation
및 를 사용하십시오 . 들여쓰기를 위해 필요한 곳에 삽입했습니다 . 또한 중앙에 있는 eqn 번호를 위한 공간을 만들기 위해 긴 줄 중 하나를 끊어야 했습니다.aligned
align
\qquad
\documentclass{book}
\usepackage{amsmath}
\begin{document}
\begin{equation}
\begin{aligned}
u_j^{n+1}&=u_j^{n}-a(t_n)\Delta t \dfrac{\partial u}{\partial x}
+\dfrac{(\Delta t)^2}{2}\left(a(t_n)^2\dfrac{\partial^2 u}{\partial x^2}-\dfrac{da(t_n)}{dt}\dfrac{\partial u}{\partial x}\right)\\
&=u_j^{n}-a(t_n)\Delta t \dfrac{\partial u}{\partial x}
+a(t_n)^2\dfrac{(\Delta t)^2}{2}\dfrac{\partial^2 u}{\partial x^2}-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{2}\dfrac{\partial u}{\partial x}\\
&=u_j^{n}-a(t_n)\Delta t \left(\dfrac{u_{j+1}^{n}-u_{j-1}^{n}}{2\Delta x}\right)\\
&\qquad+a(t_n)^2\dfrac{(\Delta t)^2}{2}\left(\dfrac{u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}}{(\Delta x)^2}\right)\\
%%%%%%%%%%%%%%%%%%%%%%
&\qquad-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{2}\left(\dfrac{u_{j+1}^{n}-u_{j-1}^{n}}{2\Delta x}\right)\\
&= u_j^{n}-\dfrac{1}{2}\nu_n\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
+\dfrac{1}{2}\nu_n^2 \left(u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}\right)\\
&\qquad-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{4\Delta x}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
\end{aligned}
\end{equation}
\end{document}
부록
OP의 의견은 원하는 것에 대해 다른 해석을 제시했습니다. 희망적으로 이것이 욕구와 일치하기를 바랍니다.
\documentclass{book}
\usepackage{amsmath}
\begin{document}
\begin{align}
u_j^{n+1}&=u_j^{n}-a(t_n)\Delta t \dfrac{\partial u}{\partial x}
+\dfrac{(\Delta t)^2}{2}\left(a(t_n)^2\dfrac{\partial^2 u}{\partial x^2}-\dfrac{da(t_n)}{dt}\dfrac{\partial u}{\partial x}\right)\nonumber\\
&=u_j^{n}-a(t_n)\Delta t \dfrac{\partial u}{\partial x}
+a(t_n)^2\dfrac{(\Delta t)^2}{2}\dfrac{\partial^2 u}{\partial x^2}-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{2}\dfrac{\partial u}{\partial x}\nonumber\\
&=u_j^{n}-a(t_n)\Delta t \left(\dfrac{u_{j+1}^{n}-u_{j-1}^{n}}{2\Delta x}\right)
\nonumber\\
&\qquad+a(t_n)^2\dfrac{(\Delta t)^2}{2}\left(\dfrac{u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}}{(\Delta x)^2}\right)\nonumber\\
%%%%%%%%%%%%%%%%%%%%%%
&\qquad-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{2}\left(\dfrac{u_{j+1}^{n}-u_{j-1}^{n}}{2\Delta x}\right)\nonumber\\
&
\begin{aligned}
{} &= u_j^{n}-\dfrac{1}{2}\nu_n\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
+\dfrac{1}{2}\nu_n^2 \left(u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}\right)\\
&\qquad-\dfrac{da(t_n)}{dt}\dfrac{(\Delta t)^2}{4\Delta x}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
\end{aligned}
\end{align}
\end{document}