마지막 열거 항목이 정렬되지 않습니다.

마지막 열거 항목이 정렬되지 않습니다.

마지막 항목(그리고 7번째 이후에 추가된 항목)이 이전 항목과 정렬되지 않는 이유를 아는 사람이 있습니까? 모르겠어요...

\documentclass[12pt]{article}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[margin=0.5in]{geometry}

\title{Unit 1 Assessment, Part 2}
\date{May 2022}

\begin{document}

\maketitle

\begin{enumerate}
  \item x - intercepts of the quadratic function $f(x)=-x^{2}+7x-6$ is at: \\
  $0 = -x^{2} + 7x - 6 = (x - 1)(-x + 6) \\
  x = 1,x = 6$ \\
  The vertical asymptotes of the reciprocal function $g(x)=\frac{1}{-x^{2}+7x-6}$: \\
  $x = 1,x = 6$ \\
  \\
  The horizontal asymptote of the reciprocal is y = 0  since all reciprocal functions have a horizontal asymptote at y = 0. \\
  \\
  The interval of increase of the quadratic function is $(-\infty,3.5)$, and the interval of decrease of the quadratic function is $(3.5,\infty)$. Therefore, the interval of decrease of the reciprocal function is $(-\infty,1)\cup(1,3.5)$, and the interval of increase of the reciprocal function is $(3.5,6)\cup(6,\infty)$.\\
  \\
  The quadratic function has a maximum point at x = 3.5, therefore the reciprocal has a minimum point at x = 3.5. \\
  \\
  The positive interval of the quadratic function is (1,6), and the negative interval of the quadratic function is $(-\infty,1)\cup(6,\infty)$. Therefore, the positive interval of the reciprocal function is (1,6), and the negative interval of the quadratic function is $(-\infty,1)\cup(6,\infty)$.\\
  \begin{figure}[H]
    \centering
    \includegraphics[scale=0.5]{unit1part2a.png}
    \caption{Graph: $f(x)=-x^{2}+7x-6$ \& $g(x)=\frac{1}{-x^{2}+7x-6}$.}
  \end{figure}

  \item \begin{enumerate}
    \item $f(x) = \frac{-2x - 5}{3x + 18}$
    \begin{center}
      \begin{tabular}{|c|c|c|c|c|}
          \hline
          Vertical asymptotes & Horizontal asymptotes & x - intercept & y - intercept & Domain \\
          \hline
          x = -6 & $y =  -\frac{2}{3}$ & $(-\frac{5}{2},0)$ & $(0,-\frac{5}{18})$ & $D = \{x\in\mathbb{R}|x\neq-6\}$ \\
          \hline
      \end{tabular}
    \end{center}
    \begin{figure}[H]
      \centering
      \includegraphics[scale=0.5]{unit1part2b.png}
      \caption{Graph: $f(x) = \frac{-2x - 5}{3x + 18}$.}
    \end{figure}

    \item Positive interval: $(-6,-2.5)$ \\
     Negative intervals: $(-\infty,-6)\cup(-2.5,\infty)$
  \end{enumerate}

  \item Find the real roots of the following rational equations.
  \begin{enumerate}
    \item $\frac{-7x}{9x + 11} - 12 = \frac{1}{x} \\
    \frac{-7x}{9x + 11} = \frac{1 + 12x}{x} \\
    (-7x)(x) = (9x + 11)(1 + 12x) \\
    -7x^2 = 9x + 108x^2 + 11 + 132x \\
    115x^2 + 141x + 11 = 0 \\
    x = \frac{-141\pm\sqrt{141^2 - (4)(115)(11)}}{(2)(115)} \\
    x \approx -0.08,x \approx -1.14$

    \item $\frac{x - 1}{x + 2} = \frac{3x + 8}{5x - 1} \\
    (x - 1)(5x - 1) = (x + 2)(3x + 8) \\
    5x^2 - x - 5x + 1 = 3x^2 + 8x + 6x + 16 \\
    2x^2 - 20x - 15 = 0 \\
    x = \frac{-(-20)\pm\sqrt{(-20)^2 - (4)(2)(-15)}}{(2)(2)} \\
    x = \frac{10\pm\sqrt{130}}{2}$
  \end{enumerate}

  \item $8x - 3 \leq 2x+1 \leq 17x - 8 \\
  8x - 3 \leq 2x+1 \\
  6x \leq 4 \\
  x \leq \frac{2}{3} \\
  2x+1 \leq 17x - 8 \\
  9 \leq 15x \\
  x \geq \frac{3}{5} \\
  \frac{3}{5} \leq x \leq \frac{2}{3}$

  \item $\frac{5x + 4}{x - 11} < \frac{5x - 7}{x + 13} \\
  \frac{5x + 4}{x - 11} - \frac{5x - 7}{x + 13} < 0 \\
  \frac{(5x + 4)(x + 13) - (5x - 7)(x - 11)}{(x - 11)(x + 13)} < 0 \\
  \frac{5x^2 + 65x + 4x + 52 - 5x^2 + 55x + 7x - 77}{(x - 11)(x + 13)} < 0 \\
  \frac{121x - 25}{(x - 11)(x + 13)} < 0 \\
  \text{Critical numbers:} \\
  121x - 25 = 0 \\
  x = \frac{25}{121} \\
  x - 11 = 0 \\
  x = 11 \\
  x + 13 = 0 \\
  x = -13$ \\
  \begin{tabular}{|c|c|c|c|c|c|}
    \hline
    Intervals & Test value x & 121x - 25 & x - 11 & x + 13 & $\frac{121x - 25}{(x - 11)(x + 13)}$ \\
    \hline
    $x < -13$ & -14 & - & - & - & - \\
    \hline
    $-13 < x < \frac{25}{121}$ & 0 & - & - & + & + \\
    \hline
    $ \frac{25}{121} < x < 11$ & 10 & + & - & + & - \\
    \hline
    $x > 11$ & 12 & + & + & + & + \\
    \hline
  \end{tabular} \\
  \\
  Therefore, the solution is $(-\infty,-13)\cup(\frac{25}{121},11)$.

  \item $(3 + x)(5 + x)(7 + x) = 693 \\
  (15 + 3x + 5x + x^2)(7 + x) = 693 \\
  105 + 15x + 56x + 8x^2 + 7x^2 + x^3 - 693 = 0 \\
  x^3 + 15x^2 + 71x - 588 = 0 \\
  \because 4^3 + 15(4)^2 + 71(4) - 588 = 0 \\
  \therefore x - 4$ is a factor. \\
  Devide $x^3 + 15x^2 + 71x - 588$ by x - 4: \\
  $(x - 4)(x^2 + 19x + 127) = 0 \\
  \because 19^2 - (4)(1)(127) < 0 \\
  \therefore x^2 + 19x + 127 = 0$ has no real solution. \\
  When x - 4 = 0, x = 4 \\
  The value of x is 4 will produce a box with a volume of 693 cm^3.

  \item Let x represent the width in meters. \\
  $(3x + 1)(2x - 5)x \geq 8436 \\
  6x^3 - 13x^2 - 5x - 8436 \geq 0 \\
  \because 6(12)^3 - 13(12)^2 - 5(12) - 8436 = 0 \\
  \therefore x - 12$ is a factor. \\
  Devide $6x^3 - 13x^2 - 5x - 8436$ by x - 12: \\
  $(x - 12)(6x^2 + 59x + 703) \geq 0 $\\
  Critical number: \\
  $\because 59^2 - (4)(6)(703) < 0 \\
  \therefore 6x^2 + 59x + 703 = 0$ has no real solution. \\
  When x - 12 = 0, x = 12 \\
  \begin{tabular}{|c|c|c|c|c|}
    \hline
    Intervals & Test value x & x - 12 & 6x^2 + 59x + 703 & (x - 12)(6x^2 + 59x + 703) \\
    \hline
    $x < 12$ & 11 & - & + & - \\
    \hline
    $x > 12$ & 13 & + & + & + \\
    \hline
  \end{tabular} \\
  $D = \{x\in\mathbb{R}|x\geq12\} \\
  3(12) + 1  = 37 \\
  2(12) - 5 = 19 \\$
  When the length is greater or equal to 37 m, the height is greater or equal to 19 m, and the width is greater or equal to 12 m, the volume of the container is at least 8436 m^3.
\end{enumerate}

\end{document}

7번째 항목을 제외하고 다른 모든 항목은 6번째 항목과 동일하게 정렬됩니다.

답변1

문서에 오류가 있어서 실제로 컴파일되지 않습니다. 그렇기 때문에 출력(오류가 있기 때문에 신뢰해서는 안 됨)에서 열거의 마지막 항목이 올바르게 정렬되지 않은 것입니다.

  • 122행에서는 cm^3텍스트 모드로 썼지만 로 쓴 지수는 ^3수학 모드여야 합니다. 단위를 조판하는 가장 좋은 방법은 다음을 사용하는 것입니다.siunitx: 간단히 cm^3로 바꿀 수 있습니다 \unit{cm^3}.
  • 137행에는 텍스트 모드의 지수가 있는 다항식이 있습니다. 수학 모드여야 합니다.
  • 147번째 줄에서는 텍스트 모드로 썼기 m^3때문에 와 같은 오류가 발생합니다 cm^3.

다음은 귀하의 예의 수정된 버전입니다.

\documentclass[12pt]{article}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[margin=0.5in]{geometry}
\usepackage{siunitx}

\title{Unit 1 Assessment, Part 2}
\date{May 2022}

\begin{document}

\maketitle

\begin{enumerate}
  \item x - intercepts of the quadratic function $f(x)=-x^{2}+7x-6$ is at: \\
  $0 = -x^{2} + 7x - 6 = (x - 1)(-x + 6) \\
  x = 1,x = 6$ \\
  The vertical asymptotes of the reciprocal function $g(x)=\frac{1}{-x^{2}+7x-6}$: \\
  $x = 1,x = 6$ \\
  \\
  The horizontal asymptote of the reciprocal is y = 0  since all reciprocal functions have a horizontal asymptote at y = 0. \\
  \\
  The interval of increase of the quadratic function is $(-\infty,3.5)$, and the interval of decrease of the quadratic function is $(3.5,\infty)$. Therefore, the interval of decrease of the reciprocal function is $(-\infty,1)\cup(1,3.5)$, and the interval of increase of the reciprocal function is $(3.5,6)\cup(6,\infty)$.\\
  \\
  The quadratic function has a maximum point at x = 3.5, therefore the reciprocal has a minimum point at x = 3.5. \\
  \\
  The positive interval of the quadratic function is (1,6), and the negative interval of the quadratic function is $(-\infty,1)\cup(6,\infty)$. Therefore, the positive interval of the reciprocal function is (1,6), and the negative interval of the quadratic function is $(-\infty,1)\cup(6,\infty)$.\\
  \begin{figure}[H]
    \centering
    \includegraphics[scale=0.5]{example-image-a}
    \caption{Graph: $f(x)=-x^{2}+7x-6$ \& $g(x)=\frac{1}{-x^{2}+7x-6}$.}
  \end{figure}

  \item \begin{enumerate}
    \item $f(x) = \frac{-2x - 5}{3x + 18}$
    \begin{center}
      \begin{tabular}{|c|c|c|c|c|}
          \hline
          Vertical asymptotes & Horizontal asymptotes & x - intercept & y - intercept & Domain \\
          \hline
          x = -6 & $y =  -\frac{2}{3}$ & $(-\frac{5}{2},0)$ & $(0,-\frac{5}{18})$ & $D = \{x\in\mathbb{R}|x\neq-6\}$ \\
          \hline
      \end{tabular}
    \end{center}
    \begin{figure}[H]
      \centering
      \includegraphics[scale=0.5]{example-image-b}
      \caption{Graph: $f(x) = \frac{-2x - 5}{3x + 18}$.}
    \end{figure}

    \item Positive interval: $(-6,-2.5)$ \\
     Negative intervals: $(-\infty,-6)\cup(-2.5,\infty)$
  \end{enumerate}

  \item Find the real roots of the following rational equations.
  \begin{enumerate}
    \item $\frac{-7x}{9x + 11} - 12 = \frac{1}{x} \\
    \frac{-7x}{9x + 11} = \frac{1 + 12x}{x} \\
    (-7x)(x) = (9x + 11)(1 + 12x) \\
    -7x^2 = 9x + 108x^2 + 11 + 132x \\
    115x^2 + 141x + 11 = 0 \\
    x = \frac{-141\pm\sqrt{141^2 - (4)(115)(11)}}{(2)(115)} \\
    x \approx -0.08,x \approx -1.14$

    \item $\frac{x - 1}{x + 2} = \frac{3x + 8}{5x - 1} \\
    (x - 1)(5x - 1) = (x + 2)(3x + 8) \\
    5x^2 - x - 5x + 1 = 3x^2 + 8x + 6x + 16 \\
    2x^2 - 20x - 15 = 0 \\
    x = \frac{-(-20)\pm\sqrt{(-20)^2 - (4)(2)(-15)}}{(2)(2)} \\
    x = \frac{10\pm\sqrt{130}}{2}$
  \end{enumerate}

  \item $8x - 3 \leq 2x+1 \leq 17x - 8 \\
  8x - 3 \leq 2x+1 \\
  6x \leq 4 \\
  x \leq \frac{2}{3} \\
  2x+1 \leq 17x - 8 \\
  9 \leq 15x \\
  x \geq \frac{3}{5} \\
  \frac{3}{5} \leq x \leq \frac{2}{3}$

  \item $\frac{5x + 4}{x - 11} < \frac{5x - 7}{x + 13} \\
  \frac{5x + 4}{x - 11} - \frac{5x - 7}{x + 13} < 0 \\
  \frac{(5x + 4)(x + 13) - (5x - 7)(x - 11)}{(x - 11)(x + 13)} < 0 \\
  \frac{5x^2 + 65x + 4x + 52 - 5x^2 + 55x + 7x - 77}{(x - 11)(x + 13)} < 0 \\
  \frac{121x - 25}{(x - 11)(x + 13)} < 0 \\
  \text{Critical numbers:} \\
  121x - 25 = 0 \\
  x = \frac{25}{121} \\
  x - 11 = 0 \\
  x = 11 \\
  x + 13 = 0 \\
  x = -13$ \\
  \begin{tabular}{|c|c|c|c|c|c|}
    \hline
    Intervals & Test value x & 121x - 25 & x - 11 & x + 13 & $\frac{121x - 25}{(x - 11)(x + 13)}$ \\
    \hline
    $x < -13$ & -14 & - & - & - & - \\
    \hline
    $-13 < x < \frac{25}{121}$ & 0 & - & - & + & + \\
    \hline
    $ \frac{25}{121} < x < 11$ & 10 & + & - & + & - \\
    \hline
    $x > 11$ & 12 & + & + & + & + \\
    \hline
  \end{tabular} \\
  \\
  Therefore, the solution is $(-\infty,-13)\cup(\frac{25}{121},11)$.

  \item $(3 + x)(5 + x)(7 + x) = 693 \\
  (15 + 3x + 5x + x^2)(7 + x) = 693 \\
  105 + 15x + 56x + 8x^2 + 7x^2 + x^3 - 693 = 0 \\
  x^3 + 15x^2 + 71x - 588 = 0 \\
  \because 4^3 + 15(4)^2 + 71(4) - 588 = 0 \\
  \therefore x - 4$ is a factor. \\
  Devide $x^3 + 15x^2 + 71x - 588$ by x - 4: \\
  $(x - 4)(x^2 + 19x + 127) = 0 \\
  \because 19^2 - (4)(1)(127) < 0 \\
  \therefore x^2 + 19x + 127 = 0$ has no real solution. \\
  When x - 4 = 0, x = 4 \\
  The value of x is 4 will produce a box with a volume of 693 \unit{cm^3}.

  \item Let x represent the width in meters. \\
  $(3x + 1)(2x - 5)x \geq 8436 \\
  6x^3 - 13x^2 - 5x - 8436 \geq 0 \\
  \because 6(12)^3 - 13(12)^2 - 5(12) - 8436 = 0 \\
  \therefore x - 12$ is a factor. \\
  Devide $6x^3 - 13x^2 - 5x - 8436$ by x - 12: \\
  $(x - 12)(6x^2 + 59x + 703) \geq 0 $\\
  Critical number: \\
  $\because 59^2 - (4)(6)(703) < 0 \\
  \therefore 6x^2 + 59x + 703 = 0$ has no real solution. \\
  When x - 12 = 0, x = 12 \\
  \begin{tabular}{|c|c|c|c|c|}
    \hline
    Intervals & Test value x & x - 12 & $6x^2 + 59x + 703$ & $(x - 12)(6x^2 + 59x + 703)$ \\
    \hline
    $x < 12$ & 11 & - & + & - \\
    \hline
    $x > 12$ & 13 & + & + & + \\
    \hline
  \end{tabular} \\
  $D = \{x\in\mathbb{R}|x\geq12\} \\
  3(12) + 1  = 37 \\
  2(12) - 5 = 19 \\$
  When the length is greater or equal to 37 m, the height is greater or equal to 19 m, and the width is greater or equal to 12 m, the volume of the container is at least 8436 \unit{m^3}.
\end{enumerate}

\end{document}

이제 컴파일되고 열거형의 마지막 항목이 출력에 올바르게 정렬됩니다.

LaTeX 오류가 발생하지 않더라도 문서에 여전히 인쇄상의 오류가 있다는 점도 지적해야 한다고 생각합니다. 여기에 두 가지 제안이 있습니다.

  • x예를 들어 열거 항목 7의 첫 번째 줄과 같이 수학적 변수로 사용하려는 경우 텍스트 모드로 작성되는 경우가 있습니다. "x"가 수학적 양을 나타내는 경우 항상 수학 모드로 작성해야 합니다.
  • 대수적 조작 및 기타 수학적 내용이 포함된 행 중 상당수는 디스플레이 수학 환경(예 equation: align또는 gather)을 사용하여 작성하는 경우 읽기가 훨씬 쉬울 것입니다.

답변2

문제는 일곱 번째 항목의 m^3 때문에 발생합니다. 그건 오류입니다. m^3m 세제곱을 얻기 위한 입력은 수학 모드에서만 작동합니다. 대신 사용하세요 m\textsuperscript{3}.

관련 정보