
이것이 내가 현재 가지고 있는 것입니다:
\documentclass{report}
\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
\def\svgwidth{#1\columnwidth}
\import{./figures/}{#2.pdf_tex}
}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.
\begin{wrapfigure}{r}{0.4\linewidth}
\centering
\caption{$y = g(x)$}
\incfig[0.4]{limit-graph}
\label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
\begin{enumerate}
\item[\textbf{2.)}] $g(5)$.
\vspace{2cm}
\item[\textbf{10.)}] $g(-2)$.
\vspace{2cm}
\item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
\vspace{2cm}
\end{enumerate}\columnbreak\begin{enumerate}
\item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
\vspace{2cm}
\item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
\vspace{2cm}
\item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
\vspace{2cm}
\end{enumerate}
\end{multicols}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\
\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}
그러나 결과는 다음과 같습니다.
내가 도대체 뭘 잘못하고있는 겁니까?
답변1
작업 패키지를 사용하고 그래프를 미니페이지에 넣을 것을 제안합니다.
%https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
\documentclass{report}
\usepackage{tasks}
\usepackage{graphicx}
\parindent=0pt
\settasks{label=\bfseries\arabic*.),label-width=2em}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure.
\begin{minipage}[t]{0.6\linewidth}
\vspace{0pt}
\begin{tasks}[start=2](2)
\task $g(5)$.
\vspace{2cm}
\task $g(-2)$.
\vspace{2cm}
\end{tasks}
\begin{tasks}[start=10](2)
\task $\lim_{x \to 2^{+}} g(t)$.
\vspace{2cm}
\task $\lim_{t \to 5} g(t)$.
\vspace{2cm}
\task $\lim_{t \to 2^{-}} g(t)$.
\vspace{2cm}
\task $\lim_{x \to -2} g(t)$.
\vspace{2cm}
\end{tasks}
\end{minipage}%
\begin{minipage}[t]{0.4\linewidth}
\vspace{0pt}
\centering
\includegraphics[width=\linewidth]{example-image-duck}
$y = g(x)$
\end{minipage}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}]
\begin{tasks}[start=19](2)
\task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{tasks}
\end{document}
편집2문제 공간 paracol을 사용한 더 나은 솔루션.
패키지의 디버그 옵션은 매우 흥미롭습니다.
%https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
\documentclass{report}
\usepackage{graphicx}
\usepackage{tasks}
\usepackage{paracol}
\parindent=0pt
\settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm,debug}
%\settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.
\smallskip
\begin{paracol}{2}
\begin{tasks}[start=2](2)
\task $g(5)$.
\task $g(-2)$.
\end{tasks}
\begin{tasks}[start=10](2)
\task $\lim_{x \to 2^{+}} g(t)$.
\task $\lim_{t \to 5} g(t)$.
\task $\lim_{t \to 2^{-}} g(t)$.
\task $\lim_{x \to -2} g(t)$.
\end{tasks}
\switchcolumn
\begin{figure}
\includegraphics[width=\linewidth,height=7cm]{example-image-duck}
\caption{$y = g(x)$}
\label{fig:limit_graph}
\end{figure}
\end{paracol}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}]
\begin{tasks}[start=19]
\task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{tasks}
\end{document}
답변2
내 해결책은 다음과 같습니다.
\documentclass{report}
\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
\def\svgwidth{#1\columnwidth}
\import{./figures/}{#2.pdf_tex}
}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.
\begin{wrapfigure}[7]{r}{0.4\linewidth}
\centering
\incfig[0.4]{limit-graph}
\caption{$y = g(x)$}
\label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
\begin{enumerate}
\item[\textbf{2.)}] $g(5)$.
\vspace{2cm}
\item[\textbf{10.)}] $g(-2)$.
\vspace{2cm}
\item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
\vspace{2cm}
\end{enumerate}\columnbreak\begin{enumerate}
\item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
\vspace{2cm}
\item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
\vspace{2cm}
\item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
\vspace{2cm}
\end{enumerate}
\end{multicols}
\vspace{1.1cm}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\
\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}
출력은 다음과 같습니다.
나는 별로 변하지 않았다. 방금 캡션의 위치를 변경하고 wrapfigure
다음 단락을 계속해서 감싸지 않도록 줄바꿈할 줄 수를 명시적으로 지정했습니다.