내 문서를 이와 비슷하게 변환하려면 어떻게 해야 합니까?

내 문서를 이와 비슷하게 변환하려면 어떻게 해야 합니까?

여기에 이미지 설명을 입력하세요

\ 며칠 전에 이 메모를 발견했는데, 이 메모의 작성 스타일에 깊은 인상을 받았습니다. 나도 이렇게 (수학) 노트를 만들고 싶었어요.

하지만 저는 라텍스(뒷면)의 초보자이기 때문에 어떻게 문서를 이와 같이 변환할 수 있는지에 대한 지식이 많지 않았습니다. 그런데 이 사이트를 며칠 써보니 어떻게 중앙에 섹션을 쓰고 상단에 페이지 번호를 매기는지 등등을 알 수 있었습니다.

서문의 내 코드는 다음과 같습니다

\documentclass[a4paper,twoside,english]{article}
%\usepackage[T1]{fontenc}
%\usepackage{tgtermes}
%\usepakage{times}
\usepackage[paperheight=600pt,paperwidth=515pt ,bottom=-7mm,right=22.4mm]{geometry}
\setlength{\headsep}{5mm}
%\setlength{\hoffset}{0pt}
\setlength{\oddsidemargin}{1pt}
%\setlength{\marginparwidth}{0mm}
%\setlength{\marginparsep}{0mm}
\setlength{\evensidemargin}{1pt}
\setlength{\footskip}{1.6mm}
\setlength{\voffset}{-8mm}
\setlength{\headheight}{5mm}
\setlength{\textwidth}{370pt}
\setlength{\textheight}{530pt}
%\usepackage{xcolor}
\usepackage{titlesec}
%\titleformat{\subsection}[hang]{\bfseries}{}{1em}{}
%\setcounter{secnumdepth}{1}
%\usepackage{sectsty}
%\allsectionsfont{\centering}
%\titlelabel{\thetitle . \enspace}
\renewcommand\thesection{\arabic{section}.}
\titleformat{\section}[block]{\Large\centering}{\arabic{section}.}{1em}{}
%\sectionfont{\centering}
\usepackage{fancyhdr}
\usepackage{calc}
%\usepackage{showframe}
%\usepackage{fourier}
\usepackage{graphicx} % Required for inserting images
\usepackage{blindtext}
\usepackage{amsfonts,amsmath,amssymb,amsthm}
%\renewcommand\thesubsection{\thesection.\arabic{subsection}}

질문: 하지만 제가 막고 있고 많은 검색 후에도 알아낼 수 없는 유일한 것은 이러한 글꼴 스타일의 이름이 무엇이며 내 컴퓨터에 이 글꼴을 어떻게 로드할 수 있는지입니다.전체문서?

여기에 이미지 설명을 입력하세요

게다가 비슷한 마진도 설정해 보았습니다. 그런데 pdf만 보는 것만으로는 여백을 알 수 없었습니다.\ pdf에서 비슷한 여백을 알아내는 것이 가능합니까? 그렇다면 어떻게 할까요?

도움을 주시면 감사하겠습니다. 감사합니다.

편집하다:
여기서는 전체 문서의 글꼴 스타일에 대해 이야기하고 있습니다. 처음에는 이 PDF의 글꼴이 나에게 기본 글꼴인 것처럼 보입니다. 하지만 내가 작성한 PDF(기본 글꼴)와 비교해 보면 다음과 같습니다.

여기에 이미지 설명을 입력하세요

찾아보니 문서의 글꼴이 기본 글꼴이 아닙니다.

편집.2
최소한의 작업 예는 다음과 같습니다.

\documentclass[a4paper,twoside,english]{article}
\usepackage{graphicx} % Required for inserting images
\usepackage[paperheight=600pt,paperwidth=515pt ,bottom=-7mm,right=22.4mm]{geometry}
\setlength{\headsep}{5mm}
\setlength{\oddsidemargin}{1pt}
\setlength{\evensidemargin}{1pt}
\setlength{\footskip}{1.6mm}
\setlength{\voffset}{-8mm}
\setlength{\headheight}{5mm}
\setlength{\textwidth}{370pt}
\setlength{\textheight}{530pt}
\usepackage{times}
\usepackage{titlesec}
\renewcommand\thesection{\arabic{section}.}
\titleformat{\section}[block]{\Large\centering\scshape}{\arabic{section}.}{1em}{}
\usepackage{fancyhdr}
\usepackage{blindtext}
\usepackage{amsfonts,amsmath,amssymb,amsthm}
\title{My doc}
\begin{document}
\section{Hello}
\blindtext
\end{document}

편집.3
Mirco의 도움과 안내로 Mirco 코드를 약간 수정하고 실제로 원하는 것을 얻었습니다.
게다가 이제 PDF의 크기가 11.33 × 14.67인치(세로)라는 것을 알게 되었습니다. 문서에서 어떻게 발행할 수 있나요?

\documentclass{amsart}

\usepackage[a4paper,margin=3.75cm, top=1.74cm,bottom=1.5cm,left=3.74cm,right=3.74cm]{geometry}
\usepackage[english]{babel}
\hyphenation{pre-image} % avoid "preim-age"

\usepackage{cleveref} % for "clever" cross-references
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhead[C]{REAL ANALYSIS}
\fancyhead[LE,RO]{\thepage}
\fancyfoot{}
\renewcommand{\headrulewidth}{0pt}
\usepackage{blindtext}

%\usepackage{amsthm} % is loaded automatically by 'amsart' class
\theoremstyle{theorem} % italic lettering
\newtheorem{theorem}{Theorem}[section] 
\newtheorem{proposition}[theorem]{Proposition} % all theorem-like environments to share the same counter

\theoremstyle{definition} % upright lettering
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}

\theoremstyle{remark}
\newtheorem*{remark}{Remark} % 'remark' env.: not numbered

\usepackage[scr=euler]{mathalpha} % for "Euler script"

\usepackage{enumitem} % for \newlist and \setlist macros
\newlist{thmenumerate}{enumerate}{1} % 'enumerate'-like list
\setlist[thmenumerate]{label=\upshape(\alph*)} % alphabetical numbering

\crefname{thmenumeratei}{part}{parts} % label for parts of enumerated list

% -------------

\begin{document}
\section{Real Analysis}

\addtocounter{theorem}{2} % just for this example

\noindent

(earlier stuff)

\begin{definition} 
Let $(X,\mathscr{M})$ be a measurable space. A function $f\colon X\to[-\infty,\infty]$ is said to be $\mathscr{M}$-measurable (or simply \emph{measurable} when the context is clear) if the preimage 
$f^{-1}((a,\infty])=\{x\in X\colon f(x)>a\}$ is measurable for every real number~$a$.
\end{definition}

\begin{example} \phantom{.}\par % force an immediate line break
\begin{thmenumerate}
\item Constant functions are measurable.
\item Given a subset $A$ of $X$, the characteristic function $\chi_{A}$ is a measurable function if and only if $A$ is measurable.
\item The continuous functions $f\colon \mathbb{R}^d\to \mathbb{R}$ are \dots
\item The monotone functions $f\colon \mathbb{R}\to \mathbb{R}$ are \dots
\end{thmenumerate}
\end{example}

\begin{proposition} 
Let $(X,\mathscr{M})$ be a measurable space and let $f\colon X\to[-\infty,\infty]$ be a function. Then the following statements are equivalent:
\begin{thmenumerate}
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\end{thmenumerate}
\end{proposition}

\begin{proposition} 
Let $(X,\mathscr{M})$ be a measurable space. If $f$ and $g$ are measurable functions defined on $X$, then the sets
\begin{thmenumerate}
\item \label{part:greaterthan} $\{x\in X\colon f(x)>g(x)\}$,
\item \label{part:greaterthanorequal} $\{x\in X\colon f(x)\ge g(x)\}$, and 
\item \label{part:equal} $\{x\in X\colon f(x)=g(x)\}$
\end{thmenumerate}
are all measurable.
\end{proposition}

\begin{proof}
If $r_1,r_2,\dots$ is an enumeration of the rational numbers, then
\[
\{x\in X : f(x)>g(x)\} =
\bigcup_{n=1}^{\infty} \bigl[x\in X: f(x)>r_n\} \cap
\{x\in X: g(x)<r_n\}\bigr] 
\]
is measurable since it is a countable union of measurable sets, establishing \cref{part:greaterthan}.

\Cref{part:greaterthanorequal} follows by noting that
\[
\{x\in X: f(x)\ge g(x)\}=\{x\in X: g(x)>f(x)\}^c,
\]
is measurable by \ref{part:greaterthan}.

Finally, to show \cref{part:equal} observe that
\[
\{x\in X:f(x)=g(x)\}=\{x\in X: f(x)\ge g(x)\} \cap 
\{x\in X: g(x)\ge f(x)\}
\]
is measurable by \ref{part:greaterthanorequal}.
\end{proof}

\begin{remark}
We now want to show that \dots
\end{remark}

\noindent
(more stuff)

\section{Measure}

\begin{definition}
By a \emph{measure} $\mu$ on a measurable space $(X,\mathscr{M})$, we mean an extended real valued nonnegative set function $\mu\colon\mathscr{M}\to[0, \infty]$ for which $\mu(\emptyset)=0$ and which is \emph{countably additive} in the sense that for any countable disjoint collection $\{E_n\}_{n=1}^{\infty}$ of measurable sets,
\[
\mu\biggl(\,\bigcup_{n=1}^{\infty} E_n \biggr) =
\sum_{n=1}^{\infty} \mu(E_n)\,.
\]
By a \emph{measure space} $(X,\mathscr{M},\mu)$ we mean a measurable space $(X,\mathscr{M})$ together with a meausure~$\mu$ defined on~$\mathscr{M}$.
\end{definition}
\blindtext
\blindtext[4]
\section{Blind}
\blindtext[4]
\section{Help}
\blindtext[4]
\end{document}

답변1

문서의 디자인 요소를 선택하는 과정을 다시 시작하기보다는 관심 있는 문서의 섹션 헤더 형식과 같은 많은 구조적 요소를 이미 정의하고 있는 적절한 문서 클래스를 사용하겠습니다. 특정 문서의 경우 주요 후보 중 하나가 amsart문서 클래스인 것으로 보입니다. amsart또한 문서 클래스는 , 및 패키지를 자동 으로 amsmath로드 amssymb합니다 amsthm.

geometry그리고 (페이지 및 여백 매개변수 설정), enumitem(예를 들어 맞춤형 열거형 목록의 경우) 및 cleveref(상호 참조 목적의 경우) LaTeX 패키지의 기능을 잘 활용하십시오 .

여기에 이미지 설명을 입력하세요

\documentclass{amsart}

\usepackage[a4paper,margin=3.75cm]{geometry}

\usepackage[english]{babel}
\hyphenation{pre-image} % avoid "preim-age"

\usepackage{cleveref} % for "clever" cross-references

%\usepackage{amsthm} % is loaded automatically by 'amsart' class
\theoremstyle{theorem} % italic lettering
\newtheorem{theorem}{Theorem}[section] 
\newtheorem{proposition}[theorem]{Proposition} % all theorem-like environments to share the same counter

\theoremstyle{definition} % upright lettering
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}

\theoremstyle{remark}
\newtheorem*{remark}{Remark} % 'remark' env.: not numbered

\usepackage[scr=euler]{mathalpha} % for "Euler script"

\usepackage{enumitem} % for \newlist and \setlist macros
\newlist{thmenumerate}{enumerate}{1} % 'enumerate'-like list
\setlist[thmenumerate]{label=\upshape(\alph*)} % alphabetical numbering

\crefname{thmenumeratei}{part}{parts} % label for parts of enumerated list

% -------------

\begin{document}
\section{Real Analysis}
\addtocounter{theorem}{2} % just for this example

\noindent
(earlier stuff)

\begin{definition} 
Let $(X,\mathscr{M})$ be a measurable space. A function $f\colon X\to[-\infty,\infty]$ is said to be $\mathscr{M}$-measurable (or simply \emph{measurable} when the context is clear) if the preimage 
$f^{-1}((a,\infty])=\{x\in X\colon f(x)>a\}$ is measurable for every real number~$a$.
\end{definition}

\begin{example} \phantom{.}\par % force an immediate line break
\begin{thmenumerate}
\item Constant functions are measurable.
\item Given a subset $A$ of $X$, the characteristic function $\chi_{A}$ is a measurable function if and only if $A$ is measurable.
\item The continuous functions $f\colon \mathbb{R}^d\to \mathbb{R}$ are \dots
\item The monotone functions $f\colon \mathbb{R}\to \mathbb{R}$ are \dots
\end{thmenumerate}
\end{example}

\begin{proposition} 
Let $(X,\mathscr{M})$ be a measurable space and let $f\colon X\to[-\infty,\infty]$ be a function. Then the following statements are equivalent:
\begin{thmenumerate}
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\end{thmenumerate}
\end{proposition}

\begin{proposition} 
Let $(X,\mathscr{M})$ be a measurable space. If $f$ and $g$ are measurable functions defined on $X$, then the sets
\begin{thmenumerate}
\item \label{part:greaterthan} $\{x\in X\colon f(x)>g(x)\}$,
\item \label{part:greaterthanorequal} $\{x\in X\colon f(x)\ge g(x)\}$, and 
\item \label{part:equal} $\{x\in X\colon f(x)=g(x)\}$
\end{thmenumerate}
are all measurable.
\end{proposition}

\begin{proof}
If $r_1,r_2,\dots$ is an enumeration of the rational numbers, then
\[
\{x\in X : f(x)>g(x)\} =
\bigcup_{n=1}^{\infty} \bigl[x\in X: f(x)>r_n\} \cap
\{x\in X: g(x)<r_n\}\bigr] 
\]
is measurable since it is a countable union of measurable sets, establishing \cref{part:greaterthan}.

\Cref{part:greaterthanorequal} follows by noting that
\[
\{x\in X: f(x)\ge g(x)\}=\{x\in X: g(x)>f(x)\}^c,
\]
is measurable by \ref{part:greaterthan}.

Finally, to show \cref{part:equal} observe that
\[
\{x\in X:f(x)=g(x)\}=\{x\in X: f(x)\ge g(x)\} \cap 
\{x\in X: g(x)\ge f(x)\}
\]
is measurable by \ref{part:greaterthanorequal}.
\end{proof}

\begin{remark}
We now want to show that \dots
\end{remark}

\noindent
(more stuff)

\section{Measure}

\begin{definition}
By a \emph{measure} $\mu$ on a measurable space $(X,\mathscr{M})$, we mean an extended real valued nonnegative set function $\mu\colon\mathscr{M}\to[0, \infty]$ for which $\mu(\emptyset)=0$ and which is \emph{countably additive} in the sense that for any countable disjoint collection $\{E_n\}_{n=1}^{\infty}$ of measurable sets,
\[
\mu\biggl(\,\bigcup_{n=1}^{\infty} E_n \biggr) =
\sum_{n=1}^{\infty} \mu(E_n)\,.
\]
By a \emph{measure space} $(X,\mathscr{M},\mu)$ we mean a measurable space $(X,\mathscr{M})$ together with a meausure~$\mu$ defined on~$\mathscr{M}$.
\end{definition}

\end{document}

관련 정보