인접 행렬을 코딩하는 방법

인접 행렬을 코딩하는 방법

이것을 라텍스로 코딩하는 방법을 아시나요? 여기에 이미지 설명을 입력하세요

답변1

을 사용하면 nicematrix정말 쉽습니다.

여기에 이미지 설명을 입력하세요

\documentclass{article}
\usepackage{nicematrix}

\begin{document}

\[
\mathbf{A}_H = 
\begin{bNiceMatrix}[first-row,first-col]
    & v_6 & v_3 & v_4 & v_5 & v_1 & v_2 \\
v_6 & 0   & 1   & 0   & 1   & 0   & 0   \\
v_3 & 1   & 0   & 1   & 0   & 0   & 1   \\
v_4 & 0   & 1   & 0   & 1   & 0   & 0   \\
v_5 & 1   & 0   & 1   & 0   & 1   & 0   \\
v_1 & 0   & 0   & 0   & 1   & 0   & 1   \\
v_2 & 0   & 1   & 0   & 0   & 1   & 0   \\
\end{bNiceMatrix}
\]

\end{document}

답변2

이것은 흥미로운 문제입니다. 여기서는 인접 행렬 인쇄를 제공하는 그래프의 데이터 구조를 정의하지만 다른 용도도 상상할 수 있습니다.

아이디어는 정점의 인덱스를 시퀀스에 저장하고 가장자리 목록을 다른 시퀀스에 저장하는 것입니다.

정점 목록은 지정된 가장자리가 가장자리 목록에 있는지 확인하기 위해 매핑됩니다(두 번). 이 경우 1행렬의 본문에 추가되고, 그렇지 않으면 입니다 0.

를 사용하면 nicematrix바깥쪽 행과 열도 채울 수 있습니다.

\documentclass{article}
\usepackage{nicematrix}

\ExplSyntaxOn

\NewDocumentCommand{\definegraph}{mmm}
 {% #1 = graph name, #2 = vertex list, #3 = edge list
  \ryl_graph_define:nnn { #1 } { #2 } { #3 }
 }

\NewDocumentCommand{\adjacencymatrix}{m}
 {% #1 = graph name
  \ryl_graph_adjacency:n { #1 }
 }

\cs_new_protected:Nn \ryl_graph_define:nnn
 {
  \seq_clear_new:c { l__graph_vertex_#1_seq }
  \seq_set_from_clist:cn { l__graph_vertex_#1_seq } { #2 }
  \seq_clear_new:c { l__graph_edge_#1_seq }
  \seq_set_from_clist:cn { l__graph_edge_#1_seq } { #3 }
 }

\tl_new:N \l__ryl_graph_adjacency_tl

\cs_new_protected:Nn \ryl_graph_adjacency:n
 {
  \tl_clear:N \l__ryl_graph_adjacency_tl
  \seq_map_inline:cn { l__graph_vertex_#1_seq }
   {
    \tl_put_right:Nn \l__ryl_graph_adjacency_tl { & v\sb{##1} }
   }
  \tl_put_right:Nn \l__ryl_graph_adjacency_tl { \\ }
  \seq_map_inline:cn { l__graph_vertex_#1_seq }
   {
    \tl_put_right:Nn \l__ryl_graph_adjacency_tl { v\sb{##1} }
    \seq_map_inline:cn { l__graph_vertex_#1_seq }
     {
      \seq_if_in:cnTF { l__graph_edge_#1_seq } { ##1-####1 }
       {% the edge is in
        \tl_put_right:Nn \l__ryl_graph_adjacency_tl { & 1 }
       }
       {
        \seq_if_in:cnTF { l__graph_edge_#1_seq } { ####1-##1 }
         {% the edge is in
          \tl_put_right:Nn \l__ryl_graph_adjacency_tl { & 1 }
         }
         {
          \tl_put_right:Nn \l__ryl_graph_adjacency_tl { & 0 }
         }
       }
     }
    \tl_put_right:Nn \l__ryl_graph_adjacency_tl { \\ }
   }
  \begin{bNiceMatrix}[first-row,first-col]
  \tl_use:N \l__ryl_graph_adjacency_tl
  \end{bNiceMatrix}
 }

\ExplSyntaxOff

\definegraph{A}{1,2,3}{1-2,1-3,2-3}
\definegraph{B}{6,3,4,5,1,2}{6-3,6-5,3-6,3-4,3-2,4-3,4-5,5-1,1-2}

\begin{document}


\[
\adjacencymatrix{A}
\]

\[
\mathbf{A}_{H}=\adjacencymatrix{B}
\]

\end{document}

두 번째 예에서는 중복된 가장자리를 나열하는 것이 관련이 없음을 알 수 있습니다.

여기에 이미지 설명을 입력하세요

관련 정보