tikz의 무작위가 아닌 불규칙한 도메인

tikz의 무작위가 아닌 불규칙한 도메인

이런거 그리는 방법이 있나요?

여기에 이미지 설명을 입력하세요

Tikz에서는 지나치게 불규칙하지 않고TikZ에서 임의의 경로 그리기?

답변1

곡선이 매끄러울 것을 요구하지 않는 것 같기 때문에 (예:임의의 단순하고 닫힌 매끄러운 곡선을 그리는 방법은 동일하지만 둘레는 동일합니까?decoration=penciline), 또는 매개변수를 조정해 볼 수 있습니다 \freedraw.

여기에 이미지 설명을 입력하세요

참고자료:

암호:

\documentclass{article}
\pagestyle{empty}
\usepackage{tikz}
\usetikzlibrary{calc,decorations.pathmorphing,patterns,shapes}

%% https://tex.stackexchange.com/questions/39296/simulating-hand-drawn-lines: percusse
\pgfdeclaredecoration{penciline}{initial}{
    \state{initial}[width=+\pgfdecoratedinputsegmentremainingdistance,auto corner on length=1mm,]{
        \pgfpathcurveto%
        {% From
            \pgfqpoint{\pgfdecoratedinputsegmentremainingdistance}
                            {\pgfdecorationsegmentamplitude}
        }
        {%  Control 1
        \pgfmathrand
        \pgfpointadd{\pgfqpoint{\pgfdecoratedinputsegmentremainingdistance}{0pt}}
                        {\pgfqpoint{-\pgfdecorationsegmentaspect\pgfdecoratedinputsegmentremainingdistance}%
                                        {\pgfmathresult\pgfdecorationsegmentamplitude}
                        }
        }
        {%TO 
        \pgfpointadd{\pgfpointdecoratedinputsegmentlast}{\pgfpoint{0.5pt}{1.5pt}}
        }
    }
    \state{final}{}
}

%% https://tex.stackexchange.com/questions/39296/simulating-hand-drawn-lines: Alain Matthes
\pgfdeclaredecoration{free hand}{start}
{
  \state{start}[width = +0pt,
                next state=step,
                persistent precomputation = \pgfdecoratepathhascornerstrue]{}
  \state{step}[auto end on length    = 3pt,
               auto corner on length = 3pt,               
               width=+2pt]
  {
    \pgfpathlineto{
      \pgfpointadd
      {\pgfpoint{2pt}{0pt}}
      {\pgfpoint{rand*0.15pt}{rand*0.15pt}}
    }
  }
  \state{final}
  {}
}
 \tikzset{free hand/.style={
    decorate,
    decoration={free hand}
    }
 } 
\def\freedraw#1;{\draw[free hand] #1;}



\begin{document}

\textbf{decoration=penciline}
\par
\begin{tikzpicture}
    \coordinate (A) at (0,0);
    \coordinate (B) at (4,0);
    \coordinate (C) at (7,0);

    \begin{scope}[decoration=penciline,scale=1]
        \draw[thick, fill=blue!25, fill opacity=.25, draw=red, decorate] (A)  rectangle (2,2); 
        \draw[thick, fill=green!25, draw=brown, radius=1cm, decorate] (B)  circle ; 
        \draw[thick, fill=red!20, draw=blue, x radius=1cm, y radius=1.5cm, rotate=30, shape=circle, decorate,] (C) circle ; 
    \end{scope}
\end{tikzpicture}

\textbf{\textbackslash freedraw}
\par
\begin{tikzpicture}
    \coordinate (A) at (0,0);
    \coordinate (B) at (4,0);
    \coordinate (C) at (7,0);

    \freedraw[thick, fill=brown!25,  draw=blue] (A)  rectangle (2,2); 
    \freedraw[thick, fill=violet!25, fill opacity=.25, draw=red] (B) circle [radius=1cm]; 
    \freedraw[thick, fill=orange!25, fill opacity=.25, draw=brown, x radius=0.15cm, y radius=1.5cm, rotate=30, shape=circle,] (C) circle {}; 
\end{tikzpicture}

\end{document}

답변2

여기에는프랙탈솔루션부드러운 선.

두 개의 원과 두 개의 삼각형이 있는 예:

프랙탈 변형의 예

코드:

\documentclass[convert={size=480},margin=1mm]{standalone}
\usepackage{tikz}
\usetikzlibrary{calc}
\usetikzlibrary{decorations.pathreplacing}
\tikzset{
  fractal lineto/.style n args={2}{%
    % #1 is a ratio of length to move the middle of each segment
    % #2 is the mininum length to apply the recurrence
    to path={
      let
      \p1=(\tikztostart), % start point
      \p2=(\tikztotarget), % end point
      \n1={veclen(\x1-\x2,\y1-\y2)}, % distance 
      \p3=($(\p1)!.5!(\p2)$), % middle point
      \p4=(rand*#1*\n1,rand*#1*\n1), % random vector
      \p5=(\x3+\x4,\y3+\y4) % random moved middle point
      in \pgfextra{
        \pgfmathsetmacro\mytest{(\n1<#2)?1:0}
        \ifnum\mytest=1 %
        \tikzset{fractal lineto/.style n args={2}{line to}}
        \fi
      } to[fractal lineto={#1}{#2}] (\p5) to[fractal lineto={#1}{#2}] (\p2)
    },
  },
  % 
  fractal curveto/.style n args={4}{
    to path={
    %   % #1 is ratio of length to move the middle of each segment
    %   % #2 is the mininum length to apply the recurrence
      let
      \p0=(\tikztostart),
      \p1=(#3),
      \p2=(#4),
      \p3=(\tikztotarget),
      \p4=($(\p0)!.5!(\p1)$),
      \p5=($(\p1)!.5!(\p2)$),
      \p6=($(\p2)!.5!(\p3)$),
      \p7=($(\p4)!.5!(\p5)$),
      \p8=($(\p5)!.5!(\p6)$),
      \p9=($(\p7)!.5!(\p8)$),
      \n1={veclen(\x0-\x0,\y0-\y9)+veclen(\x9-\x3,\y9-\y3)}, % distance 
      \p{rand}=(rand*#1*\n1,rand*#1*\n1), % random vector
      \p{randang}=(rand*#1*\n1,rand*#1*\n1), % random vector
      \p{new9}=(\x9+\x{rand},\y9+\y{rand}), % random moved middle point
      \p{new7}=(\x7+\x{rand},\y7+\y{rand}), % random moved control point
      \p{new8}=(\x8+\x{rand},\y8+\y{rand}) % random moved control point
      in \pgfextra{
        \pgfmathsetmacro\mytest{(\n1<#2)?1:0}
        \ifnum\mytest=1 %
        \tikzset{
          fractal curveto/.style n args={4}{
            curve to,controls=(####3) and (####4)
          }
        }
        \fi
        %\typeout{p9:\p9}
      }
      to[fractal curveto={#1}{#2}{\p4}{\p{new7}}] (\p{new9})
      to[fractal curveto={#1}{#2}{\p{new8}}{\p{6}}] (\p3)
    },
  },
  deformation/.style n args={3}{decorate,decoration={show path construction,
      lineto code={
        \path[#3]
        (\tikzinputsegmentfirst)
        to[fractal lineto={#1}{#2}]
        (\tikzinputsegmentlast);
      },
      curveto code={
        \path[#3]
        (\tikzinputsegmentfirst)
        to[fractal curveto=%
        {#1}{#2}{\tikzinputsegmentsupporta}{\tikzinputsegmentsupportb}]
        (\tikzinputsegmentlast);
      },
      closepath code={
        \path[#3]
        (\tikzinputsegmentfirst)
        to[fractal lineto={#1}{#2}]
        (\tikzinputsegmentlast);
      },
    },
  }
}


\begin{document}
\begin{tikzpicture}
  \pgfmathsetseed{\pdfuniformdeviate 10000000}
  \def\ratio{.1}
  \def\minlen{10mm}
  \begin{scope}
    \draw[deformation={\ratio}{\minlen}{draw=red,line width=1mm}] circle(5cm);
    \draw[deformation={\ratio}{\minlen}{draw=blue,line width=1mm}] circle(5cm);
  \end{scope}

  \begin{scope}
    \draw[deformation={\ratio}{\minlen}{draw=lime,line width=1mm}]
    (0:4) -- (120:4) -- (-120:4) -- cycle;
    \draw[deformation={\ratio}{\minlen}{draw=orange,line width=1mm}]
    (0:4) -- (120:4) -- (-120:4) -- cycle;
  \end{scope}
\end{tikzpicture}
\end{document}

답변3

내 기여는 다음과 같습니다.

\documentclass[border=7mm]{standalone}
\usepackage{tikz}

% create some random points arround 0
% #1 is the number of points
% #2 is the minimal radius
% #3 is the maximal deviation (if =0 no randomness)
\newcommand{\rndpts}[3]{
  \def\pts{}
  \foreach[
    evaluate=\x as \r using {#2+#3*rnd},
    evaluate=\x as \a using {\la+720*rnd/#1},
    remember=\a as \la (initially 0)]
  \x in {0,...,#1}
  {
    \pgfmathparse{int(\a)}
    \ifnum\pgfmathresult > 360\relax
      \breakforeach
    \else
      \xdef\pts{\pts (\a:\r)}
    \fi
  }
}
\begin{document}
  \begin{tikzpicture}
    \foreach \npts/\rmin/\rdelta/\c in {10/1/2/red,20/1/3/green,30/1/4/blue,20/2/3/yellow} {
      \rndpts{\npts}{\rmin}{\rdelta}
      \draw[\c, ultra thick] plot[smooth cycle,tension=.7]  coordinates {\pts};
    }
  \end{tikzpicture}
\end{document}

여기에 이미지 설명을 입력하세요

관련 정보