
다음과 같은 순서도가 있습니다
\begin{figure}[ht]
\centering
\setlength\abovedisplayskip{2pt}%
\begin{forest}
for tree = {
draw,
text width=54mm,
font=\scriptsize,
%
grow = south,
forked edge,
s sep = 6mm,
l sep = 4mm,
fork sep = 2mm,
if level<= 2{text centered}{},
tier/.option = level, % for aligning nodes to levels
%
edge = {-{Stealth[length=3pt]}, semithick},
}
[Feynman Integral
[Schwinger Parametrization
%%%% left branch
[Original Method of Brackets
[\textbf{Rule 1}: \underline{Expanding Exponential}
\[{e^{-A} = \sum_{n=0}^{\infty}\mfrac{(-1)^n A^n}{\Gamma(1+n)}}\]
[\textbf{Rule 2}:\underline{ Expanding Multinomials}
{\begin{multline*}
(a_1 + a_2 +\dotsm+ a_r)^{\alpha}= \\
\sum_{\mathclap{m_1,\dotsc,m_r}} \phi_{m_1,\dotsc,m_r}
a_{1}^{m_1}\dotsm a_{r}^{m_r}\\
\mfrac{\langle -\alpha+m_1+\dotsm+m_r\rangle}{\Gamma(-\alpha)}
\end{multline*}}
[\textbf{Rule 3}: \underline{Introduce Bracket}
\[ {\int_{0}^{\infty}x^{l-1}= \langle l\rangle} \]
[\textbf{Rule 4}: \underline{Eliminate Bracket}\\
An expression of the form
{\begin{multline*}
\sum_{\mathclap{n_1,\dotsc,n_r}}\phi_{1,\dotsc,r}f(n_1,\dotsc.,n_r)\\
\langle a_{11}n_{1}+\dotsm+a_{1r}n_{r}+c{1}\rangle\\
\cdots \langle a_{s1}n_{1}+\dotsm+a_{sr}n_{r}+c{1}\rangle
\end{multline*}}
is written as
{\begin{align*}
&\mfrac{1}{|detA|}\sum_{n_{s+1}\cdots n_{r}} f(n_{1}^{*},\cdot\cdot,n_{s}^{*},n_{s+1},\cdot\cdot,n_{r}) \\
&\cdot\Gamma(-n_{1}^{*})\dotsm\Gamma(-n_{s}^{*})\Gamma(-n_{s+1})\dotsm\Gamma(-n_{r})
\end{align*}}
provided $det\;A$ is not zero
]
]
]
]
]
[Modified Method of Brackets
[\textbf{Rule 1}: \underline{Expanding Exponential}
{\begin{equation*}
e^{-A} = \oint \mathrm{\frac{dz}{2\pi i}} (A)^z\Gamma(-z)
\end{equation*}}
[\textbf{Rule 2}: \underline{Expanding Multinomials}
{\begin{multline*}
(a_1 + a_2 +\dotsm + a_r)^{\alpha} = \\
\oint\frac{dz_1}{2 \pi i}\dots\oint\frac{dz_r}{2 \pi i} a_{1}^{z_1}...a_{r}^{z_r}\\
\langle -\alpha+z_1+\dotsm + z_r\rangle\frac{\Gamma(-z_1)\dotsm\Gamma(-z_2)}{\Gamma(-\alpha)}
\end{multline*}}
[\textbf{Rule 3}: \underline{Introduce Bracket}
\[ {\int_{0}^{\infty}x^{l-1}= \langle l\rangle} \]
[\textbf{Rule 4}: \underline{Eliminate Bracket}\\
An expression of the form
{\begin{multline*}
\oint\frac{dz_{1}}{2 \pi i}\cdots \oint\frac{dz_{r}}{2 \pi i}f(z_1,\dotsc,z_r)\\
\langle a_{11}z_{1}+\dotsm+a_{1r}z_{r}+c_{1}\rangle\\
\cdots \langle a_{s1}z_{1}+\dotsm+a_{sr}z_{r}+c_{r}\rangle
\end{multline*}}
is written as
{\begin{align*}
& \mfrac{1}{|detA|}\prod_{i=s+1}^r\oint\frac{dz_i}{2 \pi i}f(z_{1}^{*},\cdot\cdot,z_{s}^{*},z_{s+1},\cdot\cdot,z_{r})
\\ &\cdot \Gamma(-z_{1}^{*})\dotsm\Gamma(-z_{s}^{*})\Gamma(-z_{s+1})\dotsm\Gamma(-z_{r})
\end{align*}}
provided $det\;A$ is not zero
]
]
]
]
]
]
]
\end{forest}
%\end{center} % or use `
\end{figure}
이제 "Rule 1"을 "Rule O_1"로 편집하려고 하면 상자의 방향이 왜곡됩니다. 모든 규칙 색인을 변경하고 싶습니다.
답변1
코드에는 다음이 필요합니다.
- 문서의 서문 제공(귀하의 코드 예제와 관련됨)
- 코드에서 빈 줄 제거
- 일관된 방식으로 방정식에 중괄호를 사용하십시오. 예를 들어:
{\[ e^{A} = ... \]}
표시된 방정식의 모든 발생에서 유사함
- "O_1"은 수학 표현식으로 작성
$O_1$
하거나 텍스트로 작성O\_1
합니다(여기서 무엇을 원하는지 명확하지 않습니다). 후자의 경우는 아래 MWE의 왼쪽 분기에서 고려됩니다. 이를 사용하면 나무의 방향이 변경되지 않습니다.
귀하의 코드 조각에서 앞서 언급한 내용을 고려하면 다음과 같은 결과를 얻을 수 있습니다.
위의 결과는 다음을 사용하여 얻습니다.
\documentclass{article}
\usepackage{nccmath, mathtools}
\usepackage[edges]{forest}
\usetikzlibrary{arrows.meta}
\begin{document}
\begin{figure}[ht]
\centering
\setlength\abovedisplayskip{2pt}%
\begin{forest}
for tree = {
draw,
text width=54mm,
font=\scriptsize,
%
grow = south,
forked edge,
s sep = 6mm,
l sep = 4mm,
fork sep = 2mm,
if level<= 2{text centered}{},
tier/.option = level, % for aligning nodes to levels
%
edge = {-{Stealth[length=3pt]}, semithick},
}
[Feynman Integral
[Schwinger Parametrization
%%%% left branch
[Original Method of Brackets
[\textbf{Rule O\_1}: \underline{Expanding Exponential}
{\[e^{-A} = \sum_{n=0}^{\infty}\mfrac{(-1)^n A^n}{\Gamma(1+n)}\]}
[\textbf{Rule 2}:\underline{ Expanding Multinomials}
{\begin{multline*}
(a_1 + a_2 +\dotsm+ a_r)^{\alpha}= \\
\sum_{\mathclap{m_1,\dotsc,m_r}} \phi_{m_1,\dotsc,m_r}
a_{1}^{m_1}\dotsm a_{r}^{m_r}\\
\mfrac{\langle -\alpha+m_1+\dotsm+m_r\rangle}{\Gamma(-\alpha)}
\end{multline*}}
[\textbf{Rule 3}: \underline{Introduce Bracket}
{\[ \int_{0}^{\infty}x^{l-1}= \langle l\rangle \]}
[\textbf{Rule 4}: \underline{Eliminate Bracket}\\
An expression of the form
{\begin{multline*}
\sum_{\mathclap{n_1,\dotsc,n_r}}\phi_{1,\dotsc,r}f(n_1,\dotsc.,n_r)\\
\langle a_{11}n_{1}+\dotsm+a_{1r}n_{r}+c{1}\rangle\\
\cdots \langle a_{s1}n_{1}+\dotsm+a_{sr}n_{r}+c{1}\rangle
\end{multline*}}
is written as
{\begin{align*}
&\mfrac{1}{|detA|}\sum_{n_{s+1}\cdots n_{r}} f(n_{1}^{*},\cdot\cdot,n_{s}^{*},n_{s+1},\cdot\cdot,n_{r}) \\
&\cdot\Gamma(-n_{1}^{*})\dotsm\Gamma(-n_{s}^{*})\Gamma(-n_{s+1})\dotsm\Gamma(-n_{r})
\end{align*}}
provided $\det A$ is not zero
]
]
]
]
]
[Modified Method of Brackets
[\textbf{Rule 1}: \underline{Expanding Exponential}
{\[e^{-A} = \oint \mathrm{\frac{dz}{2\pi i}} (A)^z\Gamma(-z)\]}
[\textbf{Rule 2}: \underline{Expanding Multinomials}
{\begin{multline*}
(a_1 + a_2 +\dotsm + a_r)^{\alpha} = \\
\oint\frac{dz_1}{2 \pi i}\dots\oint\frac{dz_r}{2 \pi i} a_{1}^{z_1}...a_{r}^{z_r}\\
\langle -\alpha+z_1+\dotsm + z_r\rangle\frac{\Gamma(-z_1)\dotsm\Gamma(-z_2)}{\Gamma(-\alpha)}
\end{multline*}}
[\textbf{Rule 3}: \underline{Introduce Bracket}
{\[\int_{0}^{\infty}x^{l-1}= \langle l\rangle\]}
[\textbf{Rule 4}: \underline{Eliminate Bracket}\\
An expression of the form
{\begin{multline*}
\oint\frac{dz_{1}}{2 \pi i}\cdots \oint\frac{dz_{r}}{2 \pi i}f(z_1,\dotsc,z_r)\\
\langle a_{11}z_{1}+\dotsm+a_{1r}z_{r}+c_{1}\rangle\\
\cdots \langle a_{s1}z_{1}+\dotsm+a_{sr}z_{r}+c_{r}\rangle
\end{multline*}}
is written as
{\begin{align*}
& \mfrac{1}{|detA|}\prod_{i=s+1}^r\oint\frac{dz_i}{2 \pi i} f(z_{1}^{*},\cdot\cdot,z_{s}^{*},z_{s+1},\cdot\cdot,z_{r}) \\
&\cdot \Gamma(-z_{1}^{*})\dotsm\Gamma(-z_{s}^{*})
\Gamma(-z_{s+1})\dotsm\Gamma(-z_{r})
\end{align*}}
provided $\det A$ is not zero
]
]
]
]
]
]
]
\end{forest}
\end{figure}
\end{document}