Obrigado à SE (e particularmente a estas duas perguntas:Desenhe uma distribuição normal bivariada em TikZeComo corrigir um gráfico de contorno no topo de uma caixa 3D), consegui desenhar o que procurava com o pgfplots, exceto por um detalhe.
Nesta imagem:
Gostaria que as linhas de contorno desenhadas na superfície fossem ocultadas pela superfície em primeiro plano, mas não no fundo (como seria se você estivesse realmente olhando para esse "vale"). É possível fazer isso?
Aqui está o código (eu fiz downgrade da amostragem para fazê-la rodar mais rápido e não se esqueça da -shell-escape
opção de fazê-la rodar com LaTeX).
\documentclass{standalone}
\usepackage{pgfplots}
\usepackage{amsmath}
\begin{document}
\pgfplotsset{
colormap={whitered}{color(0cm)=(white); color(1cm)=(orange!75!red)}
}
\begin{tikzpicture}
\begin{axis}[
colormap name=whitered,
3d box,
width=15cm,
view={25}{25},
enlargelimits=false,
grid=major,
domain=-0.5:4.7,
y domain=-2:2,
samples=21,
xlabel=$x$,
ylabel=$\dot{x}$,
zlabel={$\text{E}_{\text{m}}$},
colorbar,
colorbar style={
at={(1,0)},
anchor=south west,
height=0.1*\pgfkeysvalueof{/pgfplots/parent axis height},
title={$\text{E}_{\text{m}}(x,\dot{x})$}
}
]
\addplot3 [surf] {-0.7+4*exp(-0.5*(x+3))*(3*cos(4*x*180/pi)+2.5*cos(2*x*180/pi)) + 0.5*y*y*4};
\addplot3 [contour gnuplot={number=14,labels={false},draw color=black},
samples=21,
] {-0.7+4*exp(-0.5*(x+3))*(3*cos(4*x*180/pi)+2.5*cos(2*x*180/pi)) + 0.5*y*y*4};
\addplot3 [domain=-0.5:4.7,samples=31, samples y=0, thick, smooth]
(x,-2,{-0.6+4*exp(-0.5*(x+3))*(3*cos(4*x*180/pi)+2.5*cos(2*x*180/pi))});
\addplot3 [contour gnuplot={number=14,labels={false},draw color=black},
samples=21,
z filter/.code={\def\pgfmathresult{20}},
] {-0.7+4*exp(-0.5*(x+3))*(3*cos(4*x*180/pi)+2.5*cos(2*x*180/pi)) + 0.5*y*y*4};
\end{axis}
\end{tikzpicture}
\end{document}
Responder1
Isto é muito difícil com a versão atual dopgfplots
. A simples razão é que o z-buffering não está totalmente implementado.
Na verdade, estou um pouco inseguro sobre isso, pois não segui essa parte do pgfplots.
Portanto, você deve fazer seu próprio buffer z (que pode ser bastante complicado). Isso significa que você tem que desenhar as peças em termos de sua aparência na tela e, portanto, muitos desenhos duplos.
Aqui está um começo:
\addplot3 [y domain=0:2,surf]
{-0.7+4*exp(-0.5*(x+3))*(3*cos(4*x*180/pi)+2.5*cos(2*x*180/pi)) + 0.5*y*y*4};
\addplot3 [y domain=0:2,contour gnuplot={number=14,labels={false},draw color=black},samples=21, ]
{-0.7+4*exp(-0.5*(x+3))*(3*cos(4*x*180/pi)+2.5*cos(2*x*180/pi)) + 0.5*y*y*4};
\addplot3 [domain=-0.5:4.7,samples=31, samples y=0, thick, smooth]
(x,-2,{-0.6+4*exp(-0.5*(x+3))*(3*cos(4*x*180/pi)+2.5*cos(2*x*180/pi))});
\addplot3 [contour gnuplot={number=14,labels={false},draw color=black},
samples=21,z filter/.code={\def\pgfmathresult{20}}]
{-0.7+4*exp(-0.5*(x+3))*(3*cos(4*x*180/pi)+2.5*cos(2*x*180/pi)) + 0.5*y*y*4};
\addplot3 [y domain=-2:0,surf] {-0.7+4*exp(-0.5*(x+3))*(3*cos(4*x*180/pi)+2.5*cos(2*x*180/pi)) + 0.5*y*y*4};
\addplot3 [domain=0:.25,contour gnuplot={number=14,labels={false},draw color=black},
samples=21,
] {-0.7+4*exp(-0.5*(x+3))*(3*cos(4*x*180/pi)+2.5*cos(2*x*180/pi)) + 0.5*y*y*4};
que produz:
Como você pode ver, há algumas partes que precisam ser ajustadas, mas a ideia é óbvia. Desenhe ovoltarparte, depois os contornos, depois ofrenteparte e, em seguida, ajuste todos os pequenos detalhes no posicionamento através dos domínios até que resultados satisfatórios sejam alcançados.
Sim, isso não é viável com vários pontos de sela de grande magnitude, caso em que seria melhor exportar do Octave e plotar através da opção gráfica.