Boas práticas de composição para equações longas

Boas práticas de composição para equações longas

Eu tenho a seguinte equação (horrível) em minha tese:

\begin{align*}
\frac{\partial^2}{\partial t_1^2} f(t_0,t_1) = 
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-1} \cdot \bigl(  
\frac{\partial^2}{\partial t_1^2}\alpha(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \log ( \delta+2t_0+2t_1) +\\
\alpha'(w-t_0+t_1) \cdot 2 \cdot  \log ( \delta+2t_0+2t_1)+
\alpha'(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \frac{2}{\delta+2t_0+2t_1} +\\
2 \frac{\partial}{\partial t_1} \alpha( w-t_0+t_1 ) \bigr) +
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-2}\cdot\\
 \bigl( \frac{\partial}{\partial t_1} \alpha(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot \log ( \delta+2t_0+2t_1) + (\alpha (w-t_0+t_1) -2) \bigr) \cdot \\
\bigl( \alpha'(w -t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \log ( \delta+2t_0+2t_1) +
2\alpha( w-t_0+t_1)\bigr) = \\
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-1} \cdot \Bigl( 
 \frac{\partial^2}{\partial t_1^2}\alpha(w -t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \log ( \delta+2t_0+2t_1) +\\
2 \cdot \alpha'(w-t_0+t_1)  \cdot  \bigl( 2 + \log ( \delta+2t_0+2t_1) \bigr) \Bigr) +
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1)-2} \cdot \Bigl( \\
\alpha '(w-t_0+t_1) \cdot 
(\delta + 2t_0+2t_1) \cdot \log (\delta + 2t_0+2t_1) +  
\bigl(\alpha (w-t_0+t_1) -2) \bigr) \cdot
 \bigl(   \\
\alpha'(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \log ( \delta+2t_0+2t_1) +2\alpha( w-t_0+t_1)\bigr) \Bigr)  < 0
\end{align*}

Usando este trecho exato de código, sem quaisquer comandos de formatação especiais como & ou \[2mm] o texto matemático resultante é bastante ilegível: A equação

Como você formataria essas equações em LaTeX e o que você diria que é uma boa prática ao compor equações tão grandes?

Responder1

Eu tentaria diminuir a equação agrupando as partes:

  • Não use \cdotonde não for necessário. Eu uso isso apenas para produtos escalares de vetores e números, mas não para fatores simbólicos ou antes de parênteses.
  • Os derivados são frequentemente escritos como \partial_{t_1}em vez de \frac{\partial}{\partial t_1}. Isso pode economizar algum espaço.
  • A introdução de substituições pode ser útil. No seu código (\delta+2t_0+2t_1)aparece com bastante frequência e pode ser substituído por um novo símbolo que será definido antes ou depois da equação
  • Alinhe a equação pelo menos em todos os sinais de igual:&=
  • Outras quebras de linha podem estar antes +dos sinais para "agrupar" somas (isso mostra que a equação consiste em partes semelhantes que são somadas)

Responder2

insira a descrição da imagem aqui

quebraantesnão depois dos operadores e da definição de nomes para os subtermos

\documentclass{article}
\usepackage{amsmath}

\begin{document}


\begin{align*}
\frac{\partial^2}{\partial t_1^2} f(t_0,t_1)
 &= 
b^{a-1} \cdot \bigl(  
\frac{\partial^2}{\partial t_1^2}a \cdot b \cdot  \log ( b) +
a' \cdot 2 \cdot  \log ( b)+
a' \cdot b \cdot  \frac{2}{b} +
2 \frac{\partial}{\partial t_1} a \bigr) \\
 &\quad+
 b^{a-2}\cdot
 \bigl( \frac{\partial}{\partial t_1}a \cdot b \cdot \log ( b) + (a -2) \bigr) \cdot 
\bigl( a' \cdot b \cdot  \log ( b) + 2a\bigr)\\
  & = 
b^{a-1} \cdot \Bigl( 
 \frac{\partial^2}{\partial t_1^2}a \cdot  b \cdot  \log ( b) +
2 \cdot a'  \cdot  \bigl( 2 + \log ( b) \bigr) \Bigr)\\
&\quad +
b^{a-2} \cdot \bigl(a' \cdot 
c \cdot \log (c) +  
\bigl(a -2) \bigr) \cdot
 \bigl(a' \cdot  b \cdot  \log ( b) +2a)\bigr)\bigr)\\
  &< 0
\end{align*}
where:\\
$a=\alpha( w-t_0+t_1 )$\\
$a'=\alpha'(w-t_0+t_1)$\\
$b=\delta+2t_0+2t_1$\\
$c=\delta + 2t_0+2t_1$
\end{document}

Responder3

Na verdade, gostaria de começar a responder com uma pergunta: É muito informativo exibir uma equação tão longa?

Eu tentaria identificar as partes da sua equação e escrever algo como

\[a (A + B + C) < 0\]
where
\[a = ... \]
and
\begin{align} 
A &= ... \\
B &= ... \\
C &= ...
\end{align}

isso torna muito mais fácil a leitura e talvez você também possa dar uma explicação para cada termo.

Responder4

Tente usar o breqnpacote. Comece com usepackage{breqn}e substitua o align*ambiente por dmath*. Em seguida, remova todas as quebras de linha manuais \\, pois breqna quebra de linha e o alinhamento são automáticos. Além disso, você pode substituir \bigland \bigrpor \lefte \right, porque breqnpermite quebras de linha dentro de um \left- \rightpar.

\documentclass{article}
\usepackage{breqn}  % from the "mh" bundle

\begin{document}

\begin{dmath*}
\frac{\partial^2}{\partial t_1^2} f(t_0,t_1) = 
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-1} \cdot \left(  
\frac{\partial^2}{\partial t_1^2}\alpha(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  
\log ( \delta+2t_0+2t_1) +
\alpha'(w-t_0+t_1) \cdot 2 \cdot  \log ( \delta+2t_0+2t_1)+
\alpha'(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \frac{2}{\delta+2t_0+2t_1} +
2 \frac{\partial}{\partial t_1} \alpha( w-t_0+t_1 ) \right) +
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-2}\cdot
 \left( \frac{\partial}{\partial t_1} \alpha(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) 
\cdot \log ( \delta+2t_0+2t_1) + (\alpha (w-t_0+t_1) -2) \right) \cdot 
\left( \alpha'(w -t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \log ( \delta+2t_0+2t_1) +
2\alpha( w-t_0+t_1)\right) = 
( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1 )-1} \cdot \left( 
\frac{\partial^2}{\partial t_1^2}\alpha(w -t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  
\log ( \delta+2t_0+2t_1) +
2 \cdot \alpha'(w-t_0+t_1)  \cdot  \left( 2 + \log ( \delta+2t_0+2t_1) \right) \right)
+ ( \delta+2t_0+2t_1)^{\alpha( w-t_0+t_1)-2} \cdot \Bigl( 
\alpha '(w-t_0+t_1) \cdot 
(\delta + 2t_0+2t_1) \cdot \log (\delta + 2t_0+2t_1) +  
\left(\alpha (w-t_0+t_1) -2 \right) \cdot
 \left(   
\alpha'(w-t_0+t_1) \cdot ( \delta+2t_0+2t_1) \cdot  \log ( \delta+2t_0+2t_1) +2\alpha(
 w-t_0+t_1)\right) \Bigr)  < 0
\end{dmath*}
\end{document}

informação relacionada