Como posso criar uma bela tabela de símbolos?

Como posso criar uma bela tabela de símbolos?

Uma parte do meu livro "Geometrie und Topologie" é uma tabela de símbolos que permite aos alunos encontrar rapidamente as palavras certas quando não entendem um símbolo. Isso torna a pesquisa através do index/Wikipedia/Google/math.SE muito mais fácil. Mas atualmente não parece muito bom.

As fontes completas do documento sãoaqui.

Exemplo de trabalho

O exemplo a seguir compila quase (exceto para referências e números de página) para a tabela de símbolos que tenho atualmente:

\documentclass[DIV15,BCOR12mm]{scrbook}
\KOMAoptions{paper=a5,twoside=true}
\usepackage{amsmath,amssymb}% math symbols / fonts
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc}    % this is needed for correct output of umlauts in pdf
\usepackage[bookmarks,bookmarksnumbered,hypertexnames=false,pdfpagelayout=OneColumn,colorlinks,hyperindex=false]{hyperref} % has to be after makeidx
\hypersetup{hidelinks=true}
\usepackage{braket}         % needed for \Set
\usepackage{parskip}        % nicer paragraphs
\usepackage[german,nameinlink,noabbrev]{cleveref} % has to be after hyperref, ntheorem, amsthm

\usepackage{fancyhdr}
\pagestyle{fancy}
\renewcommand{\chaptermark}[1]%
{\markboth{\MakeUppercase{\thechapter.\ #1}}{}}
\renewcommand{\sectionmark}[1]%
{\markright{\MakeUppercase{\thesection.\ #1}}}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0pt}
\newcommand{\helv}{%
\fontfamily{phv}\fontseries{b}\fontsize{9}{11}\selectfont}
\fancyhf{}
\fancyhead[LO,RE]{\helv \thepage}
\fancyhead[LE]{\helv \leftmark}
\fancyhead[RO]{\helv \rightmark}
\fancypagestyle{plain}{%
\fancyhead{}
\renewcommand{\headrulewidth}{0pt}
}

\allowdisplaybreaks
\usepackage{microtype}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% shortcuts                                                         %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\fB{\mathfrak{B}}
\def\calS{\mathcal{S}}
\def\fT{\mathfrak{T}}
\def\fU{\mathfrak{U}}
\def\atlas{\ensuremath{\mathcal{A}}}
\def\praum{\ensuremath{\mathcal{P}}}
\DeclareMathOperator{\rang}{Rg}

\newcommand\dcup{\mathbin{\dot{\cup}}}
\def\GL{\ensuremath{\mathrm{GL}}}
\DeclareMathOperator{\Homoo}{\textnormal{Homöo}}
\DeclareMathOperator{\Iso}{Iso}
\def\SL{\ensuremath{\mathrm{SL}}}
\def\PSL{\ensuremath{\mathrm{PSL}}}
\DeclareMathOperator{\Perm}{Perm}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\Fix}{Fix}
\newcommand{\ts}[1]{\textnormal{#1}} % textual subscript
\newcommand{\kappanor}{\kappa_{\ts{Nor}}}

\def\mda{\ensuremath{\mathbb{A}}}
\def\mdp{\ensuremath{\mathbb{P}}}
\def\mdc{\ensuremath{\mathbb{C}}}
\def\mdk{\ensuremath{\mathbb{K}}}
\def\mdr{\ensuremath{\mathbb{R}}}
\def\mdq{\ensuremath{\mathbb{Q}}}
\def\mdz{\ensuremath{\mathbb{Z}}}
\def\mdn{\ensuremath{\mathbb{N}}}
\def\mdh{\ensuremath{\mathbb{H}}}

\begin{document}
\appendix
\markboth{Symbolverzeichnis}{Symbolverzeichnis}
\twocolumn
\chapter*{Symbolverzeichnis}
\addcontentsline{toc}{chapter}{Symbolverzeichnis}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Mengenoperationen                                                 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Mengenoperationen}
$A^C\;\;\;$ Komplement der Menge $A$\\
$\mathcal{P}(M)\;\;\;$ Potenzmenge von $M$\\
$\overline{M}\;\;\;$ Abschluss der Menge $M$\\
$\partial M\;\;\;$ Rand der Menge $M$\\
$M^\circ\;\;\;$ Inneres der Menge $M$\\
$A \times B\;\;\;$ Kreuzprodukt zweier Mengen\\
$A \subseteq B\;\;\;$ Teilmengenbeziehung\\
$A \subsetneq B\;\;\;$ echte Teilmengenbeziehung\\
$A \setminus B\;\;\;$ $A$ ohne $B$\\
$A \cup B\;\;\;$ Vereinigung\\
$A \dcup B\;\;\;$ Disjunkte Vereinigung\\
$A \cap B\;\;\;$ Schnitt\\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Geometrie                                                         %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Geometrie}
$AB\;\;\;$ Gerade durch die Punkte $A$ und $B$\\
$\overline{AB}\;\;\;$ Strecke mit Endpunkten $A$ und $B$\\
$\triangle ABC\;\;\;$ Dreieck mit Eckpunkten $A, B, C$\\
$\overline{AB} \cong \overline{CD}\;\;\;$ Die Strecken $\overline{AB}$ und $\overline{CD}$ sind isometrisch\\
$|K|\;\;\;$ Geometrische Realisierung des Simplizialkomplexes $K$\\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Gruppen                                                           %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Gruppen}
$\Homoo(X)\;\;\;$ Homöomorphismengruppe\\
$\Iso(X)\;\;\;$ Isometriengruppe\\
$\GL_n(K)\;\;\;$ Allgemeine lineare Gruppe\footnote{von \textit{\textbf{G}eneral \textbf{L}inear Group}}\\
$\SL_n(K)\;\;\;$ Spezielle lineare Gruppe\\
$\PSL_n(K)\;\;\;$ Projektive lineare Gruppe\\
$\Perm(X)\;\;\;$ Permutationsgruppe\\
$\Sym(X)\;\;\;$ Symmetrische Gruppe
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Wege                                                              %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Wege}
$\gamma: I \rightarrow X\;\;\;$ Ein Weg\\
$[\gamma]\;\;\;$ Homotopieklasse von $\gamma$\\
$\gamma_1 * \gamma_2\;\;\;$ Zusammenhängen von Wegen\\
$\gamma_1 \sim \gamma_2\;\;\;$ Homotopie von Wegen\\
$\overline{\gamma}(x) = \gamma(1-x)\;\;\;$ Inverser Weg\\
$C := \gamma([0,1])\;\;\;$ Bild eines Weges $\gamma$

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Weiteres                                                          %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Weiteres}
$\fB\;\;\;$ Basis einer Topologie\\
$\calS\;\;\;$ Subbasis einer Topologie\\
$\fB_\delta(x)\;\;\;$ $\delta$-Kugel um $x$\\
$\fT\;\;\;$ Topologie\\

$\atlas\;\;\;$ Atlas\\
$\praum\;\;\;$ Projektiver Raum\\
$\langle \cdot , \cdot \rangle\;\;\;$ Skalarprodukt\\
$X /_\sim\;\;\;$ $X$ modulo $\sim$\\
$[x]_\sim\;\;\;$ Äquivalenzklassen von $x$ bzgl. $\sim$\\
$\| x \|\;\;\;$ Norm von $x$\\
$| x |\;\;\;$ Betrag von $x$\\
$\langle a \rangle\;\;\;$ Erzeugnis von $a$\\

$S^n\;\;\;$ Sphäre\\
$T^n\;\;\;$ Torus\\

$f \circ g\;\;\;$ Verkettung von $f$ und $g$\\
$\pi_X\;\;\;$ Projektion auf $X$\\
$f|_U\;\;\;$ $f$ eingeschränkt auf $U$\\
$f^{-1}(M)\;\;\;$ Urbild von $M$\\
$\rang(M)\;\;\;$ Rang von $M$\\
$\chi(K)\;\;\;$ Euler-Charakteristik von $K$\\
$\Delta^k\;\;\;$ Standard-Simplex\\
$X \# Y\;\;\;$ Verklebung von $X$ und $Y$\\
$d_n\;\;\;$ Lineare Abbildung aus \cref{kor:9.11}\\
$A \cong B\;\;\;$ $A$ ist isometrisch zu $B$\\
$f_*\;\;\;$ Abbildung zwischen Fundamentalgruppen (vgl. \cpageref{korr:11.5})
\onecolumn

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Zahlenmengen                                                      %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Zahlenmengen}
$\mdn = \Set{1, 2, 3, \dots} \;\;\;$ Natürliche Zahlen\\
$\mdz = \mdn \cup \Set{0, -1, -2, \dots} \;\;\;$ Ganze Zahlen\\
$\mdq = \mdz \cup \Set{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}} = \Set{\frac{z}{n} \text{ mit } z \in \mdz \text{ und } n \in \mdz \setminus \Set{0}} \;\;\;$ Rationale Zahlen\\
$\mdr = \mdq \cup \Set{\sqrt{2}, -\sqrt[3]{3}, \dots}\;\;\;$ Reele Zahlen\\
$\mdr_+\;$ Echt positive reele Zahlen\\
$\mdr_{+,0}^n := \Set{(x_1, \dots, x_n) \in \mdr^n | x_n \geq 0}\;\;\;$ Halbraum\\
$\mdr^\times = \mdr \setminus \Set{0} \;$ Einheitengruppe von $\mdr$\\
$\mdc = \Set{a+ib|a,b \in \mdr}\;\;\;$ Komplexe Zahlen\\
$\mdp = \Set{2, 3, 5, 7, \dots}\;\;\;$ Primzahlen\\
$\mdh = \Set{z \in \mdc | \Im{z} > 0}\;\;\;$ obere Halbebene\\
$I = [0,1] \subsetneq \mdr\;\;\;$ Einheitsintervall\\

$f:S^1 \hookrightarrow \mdr^2\;\;\;$ Einbettung der Kreislinie in die Ebene\\
$\pi_1(X,x)\;\;\;$ Fundamentalgruppe im topologischen Raum $X$ um $x \in X$\\
$\Fix(f)\;\;\;$ Menge der Fixpunkte der Abbildung $f$\\
$\|\cdot\|_2\;\;\;$ 2-Norm; Euklidische Norm\\
$\kappa\;\;\;$ Krümmung\\
$\kappa_{\ts{Nor}}\;\;\;$ Normalenkrümmung\\
$V(f)\;\;\;$ Nullstellenmenge von $f$\footnote{von \textit{\textbf{V}anishing Set}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Krümmung                                                          %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Krümmung}
$D_p F: \mdr^2 \rightarrow \mdr^3\;\;\;$ Lineare Abbildung mit Jacobi-Matrix in $p$ (siehe \cpageref{def:Tangentialebene})\\
$T_s S\;\;\;$ Tangentialebene an $S \subseteq \mdr^3$ durch $s \in S$\\
$d_s n(x)\;\;\;$ Weingarten-Abbildung\\
\end{document}

Renderizado

insira a descrição da imagem aqui

insira a descrição da imagem aqui

Pergunta

Gostaria de saber como deixar essa tabela de símbolos mais "legal".

Uma maneira que eu poderia imaginar de como melhorá-lo seria alinhando o conteúdo da primeira página abaixo da seção "Gruppen". Mas não quero restringir as respostas a isso.

O que eu tentei

tabular

Eu tentei usar o tabularambiente:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Mengenoperationen                                                 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Mengenoperationen}
\begin{tabular}{ll}
    $A^C$           & Komplement der Menge $A$\\
    $\mathcal{P}(M)$& Potenzmenge von $M$\\
    $\overline{M}$  & Abschluss der Menge $M$\\
    $\partial M$    & Rand der Menge $M$\\
    $M^\circ$       & Inneres der Menge $M$\\
    $A \times B$    & Kreuzprodukt zweier Mengen\\
    $A \subseteq B$ & Teilmengenbeziehung\\
    $A \subsetneq B$& echte Teilmengenbeziehung\\
    $A \setminus B$ & $A$ ohne $B$\\
    $A \cup B$      & Vereinigung\\
    $A \dcup B$     & Disjunkte Vereinigung\\
    $A \cap B$      & Schnitt
\end{tabular}

mas então eu entendo isso:

insira a descrição da imagem aqui

discriminar

\section*{Mengenoperationen}\leavevmode
\begin{itemize}
    \itemsep0em 
    \item[$A^C$]            Komplement der Menge $A$\\
    \item[$\mathcal{P}(M)$] Potenzmenge von $M$\\
    \item[$\overline{M}$]   Abschluss der Menge $M$\\
    \item[$\partial M$]     Rand der Menge $M$\\
    \item[$M^\circ$]        Inneres der Menge $M$\\
    \item[$A \times B$]     Kreuzprodukt zweier Mengen\\
    \item[$A \subseteq B$]  Teilmengenbeziehung\\
    \item[$A \subsetneq B$] echte Teilmengenbeziehung\\
    \item[$A \setminus B$]  $A$ ohne $B$\\
    \item[$A \cup B$]       Vereinigung\\
    \item[$A \dcup B$]      Disjunkte Vereinigung\\
    \item[$A \cap B$]       Schnitt
\end{itemize}

resulta em espaçamento muito alto:

insira a descrição da imagem aqui

Responder1

Você poderia usar o xtabpacote e seu ambiente xtabular. Funciona de forma muito semelhante ao longtableambiente, pois pode quebrar colunas e páginas; no entanto, também é compatível com o modo de duas colunas, mas longtablenão é.

Sugiro que você ajuste a largura da primeira coluna da tabela (a coluna de símbolos) para que seja larga o suficiente para conter a entrada simbólica mais larga dentro de cada seção. Em seguida, ajuste a segunda coluna para que toda a tabela tenha a largura de \columnwidth. Dada a medida estreita da segunda coluna dentro de uma tabela, a justificação “completa” não é aconselhável. Em vez disso, use \RaggedRight(fornecido pelo pacote ragged2e), que permite a hifenização. (Em contraste, \raggedrightnão permite hifenização.)

O exemplo mostra apenas a primeira página do seu exemplo maior.

insira a descrição da imagem aqui

\documentclass[DIV15,BCOR12mm]{scrbook}
\KOMAoptions{paper=a5,twoside=true}

\usepackage{array,xtab,ragged2e}
\newlength\mylengtha
\newlength\mylengthb
\newcolumntype{P}[1]{>{\RaggedRight}p{#1}}
\tabcolsep=3pt % default: 6pt

\usepackage{amsmath,amssymb}% math symbols / fonts
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc}    % this is needed for correct 
                            % output of umlauts in pdf
\usepackage{braket}         % needed for \Set
\usepackage{parskip}        % nicer paragraphs

\usepackage{fancyhdr}
\pagestyle{fancy}
\renewcommand{\chaptermark}[1]%
{\markboth{\MakeUppercase{\thechapter.\ #1}}{}}
\renewcommand{\sectionmark}[1]%
{\markright{\MakeUppercase{\thesection.\ #1}}}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0pt}
\newcommand{\helv}{%
\fontfamily{phv}\fontseries{b}\fontsize{9}{11}\selectfont}
\fancyhf{}
\fancyhead[LO,RE]{\helv \thepage}
\fancyhead[LE]{\helv \leftmark}
\fancyhead[RO]{\helv \rightmark}
\fancypagestyle{plain}{%
\fancyhead{}
\renewcommand{\headrulewidth}{0pt}
}

\allowdisplaybreaks
\usepackage{microtype}

\usepackage{hyperref} % has to be after makeidx
\hypersetup{bookmarks,bookmarksnumbered,hypertexnames=false,
   pdfpagelayout=OneColumn,colorlinks,hyperindex=false,
   hidelinks=true}
\usepackage[german,nameinlink,noabbrev]{cleveref} 
   % has to be after hyperref, ntheorem, amsthm

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% shortcuts                                                         %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\fB{\mathfrak{B}}
\def\calS{\mathcal{S}}
\def\fT{\mathfrak{T}}
\def\fU{\mathfrak{U}}
\def\atlas{\ensuremath{\mathcal{A}}}
\def\praum{\ensuremath{\mathcal{P}}}
\DeclareMathOperator{\rang}{Rg}

\newcommand\dcup{\mathbin{\dot{\cup}}}
\def\GL{\ensuremath{\mathrm{GL}}}
\DeclareMathOperator{\Homoo}{\textnormal{Homöo}}
\DeclareMathOperator{\Iso}{Iso}
\def\SL{\ensuremath{\mathrm{SL}}}
\def\PSL{\ensuremath{\mathrm{PSL}}}
\DeclareMathOperator{\Perm}{Perm}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\Fix}{Fix}
\newcommand{\ts}[1]{\textnormal{#1}} % textual subscript
\newcommand{\kappanor}{\kappa_{\ts{Nor}}}

\def\mda{\ensuremath{\mathbb{A}}}
\def\mdp{\ensuremath{\mathbb{P}}}
\def\mdc{\ensuremath{\mathbb{C}}}
\def\mdk{\ensuremath{\mathbb{K}}}
\def\mdr{\ensuremath{\mathbb{R}}}
\def\mdq{\ensuremath{\mathbb{Q}}}
\def\mdz{\ensuremath{\mathbb{Z}}}
\def\mdn{\ensuremath{\mathbb{N}}}
\def\mdh{\ensuremath{\mathbb{H}}}

\begin{document}
\appendix
\markboth{Symbolverzeichnis}{Symbolverzeichnis}

\twocolumn
\chapter*{Symbolverzeichnis}
\addcontentsline{toc}{chapter}{Symbolverzeichnis}

%%%%% Mengenoperationen                                                 
\section*{Mengenoperationen}

% Set \mylengtha to widest element in first column; adjust
% \mylengthb so that the width of the table is \columnwidth
\settowidth\mylengtha{$A \subseteq B$}
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}

\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
$A^C $           & Komplement der Menge $A$\\
$\mathcal{P}(M)$ & Potenzmenge von $M$\\
$\overline{M}$   & Abschluss der Menge $M$\\
$\partial M$     & Rand der Menge $M$\\
$M^\circ$        & Inneres der Menge $M$\\
$A \times B$     & Kreuzprodukt zweier Mengen\\
$A \subseteq B$  & Teilmengenbeziehung\\
$A \subsetneq B$ & echte Teilmengenbeziehung\\
$A \setminus B$  & $A$ ohne $B$\\
$A \cup B$       & Vereinigung\\
$A \dcup B$      & Disjunkte Vereinigung\\
$A \cap B$       & Schnitt
\end{xtabular}

%%%%% Geometrie                                                         
\section*{Geometrie}

\settowidth\mylengtha{$\overline{AB} \cong \overline{CD}$}
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}

\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
$AB$ & Gerade durch die Punkte $A$ und $B$\\
$\overline{AB}$ & Strecke mit Endpunkten $A$ und $B$\\
$\triangle ABC$ & Dreieck mit Eckpunkten $A, B, C$\\
$\overline{AB} \cong \overline{CD}$ & Die Strecken $\overline{AB}$ und $\overline{CD}$ sind isometrisch\\
$|K|$ & Geometrische Realisierung des Simplizialkomplexes~$K$
\end{xtabular}

%%%%% Gruppen                                                           
\section*{Gruppen}

\settowidth\mylengtha{$\Homoo(X)$}
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}

\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
$\Homoo(X)$ & Homöomorphis\-men\-gruppe\\
$\Iso(X)$   & Isometriengruppe\\
$\GL_n(K)$  & Allgemeine lineare Gruppe (von \textit{\textbf{G}eneral \textbf{L}inear Group})\\
$\SL_n(K)$  & Spezielle lineare Gruppe\\
$\PSL_n(K)$ & Projektive lineare Gruppe\\
$\Perm(X)$  & Permutationsgruppe\\
$\Sym(X)$   & Symmetrische Gruppe
\end{xtabular}

\end{document}

Responder2

Atrasado para a festa, mas aqui está uma modificação deoutra resposta minha.

\documentclass[DIV15,BCOR12mm]{scrbook}
\KOMAoptions{paper=a5,twoside=true}

\usepackage{amsmath,amssymb}% math symbols / fonts
%\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc}    % this is needed for correct output of umlauts in pdf
\usepackage{braket}         % needed for \Set
\usepackage{parskip}        % nicer paragraphs
\usepackage{fancyhdr}
\usepackage{microtype}
\usepackage{multicol}

\usepackage[
  bookmarks,
  bookmarksnumbered,
  hypertexnames=false,
  pdfpagelayout=OneColumn,
  colorlinks,
  hyperindex=false,
  hidelinks=true,
]{hyperref} % has to be last (almost)
\usepackage[german,nameinlink,noabbrev]{cleveref} % has to be after hyperref, ntheorem, amsthm

\pagestyle{fancy}
\renewcommand{\chaptermark}[1]{\markboth{\MakeUppercase{\thechapter.\ #1}}{}}
\renewcommand{\sectionmark}[1]{\markright{\MakeUppercase{\thesection.\ #1}}}
\renewcommand{\headrulewidth}{0.5pt}
\renewcommand{\footrulewidth}{0pt}
\newcommand{\helv}{\fontfamily{phv}\fontseries{b}\fontsize{9}{11}\selectfont}
\fancyhf{}
\fancyhead[LO,RE]{\helv \thepage}
\fancyhead[LE]{\helv \leftmark}
\fancyhead[RO]{\helv \rightmark}
\fancypagestyle{plain}{%
  \fancyhead{}%
  \renewcommand{\headrulewidth}{0pt}%
}

\allowdisplaybreaks

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% shortcuts                                                         %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand\fB{\mathfrak{B}}
\newcommand\calS{\mathcal{S}}
\newcommand\fT{\mathfrak{T}}
\newcommand\fU{\mathfrak{U}}
\newcommand\atlas{\mathcal{A}}
\newcommand\praum{\mathcal{P}}
\DeclareMathOperator{\rang}{Rg}

\newcommand\dcup{\mathbin{\dot{\cup}}}
\DeclareMathOperator\GL{\mathrm{GL}}
\DeclareMathOperator{\Homoo}{\textnormal{Homöo}}
\DeclareMathOperator{\Iso}{Iso}
\DeclareMathOperator\SL{SL}
\DeclareMathOperator\PSL{PSL}
\DeclareMathOperator{\Perm}{Perm}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\Fix}{Fix}
\newcommand{\ts}[1]{\textnormal{#1}} % textual subscript
\newcommand{\kappanor}{\kappa_{\ts{Nor}}}

\newcommand\mda{\mathbb{A}}
\newcommand\mdp{\mathbb{P}}
\newcommand\mdc{\mathbb{C}}
\newcommand\mdk{\mathbb{K}}
\newcommand\mdr{\mathbb{R}}
\newcommand\mdq{\mathbb{Q}}
\newcommand\mdz{\mathbb{Z}}
\newcommand\mdn{\mathbb{N}}
\newcommand\mdh{\mathbb{H}}

\makeatletter
\newlength{\symbolswd}
\newenvironment{symbols}
 {%
  \begin{multicols*}{2}[\chapter*{Symbolverzeichnis}]
  \small
  \setlength{\parindent}{0pt}%
  \setlength{\parskip}{0pt}%
  \edef\current@symbolswd{\the\symbolswd}%
  \interlinepenalty=10000 % no page break in a two line entry
}
 {%
  \ifdim\current@symbolswd=\symbolswd
  \else
    \@latex@warning@no@line{Rerun to get list of symbols right}%
  \fi
  \immediate\write\@auxout{\global\symbolswd=\the\symbolswd}%
  \end{multicols*}
}
\newcommand{\entry}[2]{%
  \par
  \sbox\z@{$#1$\qquad}%
  \ifdim\wd\z@>\symbolswd \setlength{\symbolswd}{\wd\z@}\fi
  \raggedright
  \hangindent=\symbolswd
  \makebox[\symbolswd][s]{$#1$\leaders\hbox to 4pt{\hss.\hss}\hfill}%
  \hspace{0pt}#2\par
}
\makeatother

\begin{document}

\begin{symbols}

\section*{Mengenoperationen}

\entry{A^C}{Komplement der Menge~$A$}
\entry{\mathcal{P}(M)}{Potenzmenge von~$M$}
\entry{\overline{M}}{Abschluss der Menge~$M$}
\entry{\partial M}{Rand der Menge~$M$}
\entry{M^\circ}{Inneres der Menge~$M$}
\entry{A \times B}{Kreuzprodukt zweier Mengen}
\entry{A \subseteq B}{Teilmengenbeziehung}
\entry{A \subsetneq B}{echte Teilmengenbeziehung}
\entry{A \setminus B}{$A$ ohne~$B$}
\entry{A \cup B}{Vereinigung}
\entry{A \dcup B}{Disjunkte Vereinigung}
\entry{A \cap B}{Schnitt}

\section*{Geometrie}

\entry{AB}{Gerade durch die Punkte $A$ und~$B$}
\entry{\overline{AB}}{Strecke mit Endpunkten $A$ und~$B$}
\entry{\triangle ABC}{Dreieck mit Eckpunkten $A, B, C$}
\entry{\overline{AB} \cong \overline{CD}}{Die Strecken $\overline{AB}$
   und $\overline{CD}$ sind isometrisch}
\entry{|K|}{Geometrische Realisierung des Simplizialkomplexes~$K$}

\section*{Gruppen}

\entry{\Homoo(X)}{Homöomorphis\-men\-gruppe}
\entry{\Iso(X)}{Isometriengruppe}
\entry{\GL_n(K)}{Allgemeine lineare Gruppe
  (von \textit{\textbf{G}eneral \textbf{L}inear Group})}
\entry{\SL_n(K)}{Spezielle lineare Gruppe}
\entry{\PSL_n(K)}{Projektive lineare Gruppe}
\entry{\Perm(X)}{Permutationsgruppe}
\entry{\Sym(X)}{Symmetrische Gruppe}
\end{symbols}

\end{document}

A vantagem é que este código não utiliza tabular(ou variação dele).

Diferenças notáveis: \parskipestá definido como zero; multicolsé usado para obter duas colunas, portanto as quebras de página são automáticas; \smalle \raggedrightsão necessários por causa das colunas estreitas.

insira a descrição da imagem aqui

informação relacionada