
Quero alinhar todos os termos de duas subequações semelhantes, mas o problema é que cada uma delas é longa o suficiente para precisar ser quebrada. O problema é que depois de quebrar o \align tenta alinhar todas as linhas entre si.
O que eu quero, aparentemente, é alinhar todos os termos da linha 1 com os da linha 3 e todos os termos da linha 2 com os da linha 4, simplesmente porque as linhas 1-2 contêm a primeira equação e as linhas 3-4 a segunda. Eu li todas as outras questões de alinhamento, mas ninguém realmente alinha subequações longas.
Este é o código que consegui depois de inúmeras tentativas.
\begin{subequations}
\label{energy13}
\begin{align}
& u_e\frac{\partial \left(\varrho_e u_e\right)}{\partial t}
+ u_e\frac{\partial \left(\varrho_e u_e^2\right)}{\partial s}
+ u_e\frac{\partial \left(\varrho_e u_e v_e\right)}{\partial n}
-2 \varrho_e \varOmega u_e v_e \nonumber \\
&=- u_e\frac {\partial p_e}{\partial s}
+\qquad
+\varrho_e u_e\left(\varOmega^2R_{OPs}+\frac{\partial\varOmega}{\partial
t}(R_{OPn}+n)-\frac{\partial^2 R_{Os}}{\partial t^2}\right) \\
& u\frac{\partial \left(\varrho u\right)}{\partial t}
+ u\frac{\partial \left(\varrho u^2 \right)}{\partial s}
+ u\frac{\partial \left(\varrho u v \right)}{\partial n}
-2 \varrho \varOmega u v \nonumber \\
&=- u\frac {\partial p}{\partial s}
+\mu u\frac {\partial^2 u}{\partial n^2}
+\varrho u \left(\varOmega^2R_{OPs}+\frac{\partial\varOmega}{\partial
t}(R_{OPn}+n)-\frac{\partial^2 R_{Os}}{\partial t^2}\right)
\end{align}
\end{subequations}
Quase não alinha nada como está. Estou confuso, existe uma correção no pacote amsmath sem usar material de alinhamento especial do IEEE?
Responder1
mathtools
fornece o multlined
"subambiente", que desloca a primeira linha para a esquerda, a última linha para a direita e aplica apenas um número a cada subequação. coloque várias multlined
subequações juntas com gather
:
\documentclass{article}
\usepackage{mathtools}
\begin{document}
\noindent X\hrulefill X\ignorespaces
\begin{subequations}
\label{energy13}
\begin{gather}
\begin{multlined}
u_e\frac{\partial \left(\varrho_e u_e\right)}{\partial t}
+ u_e\frac{\partial \left(\varrho_e u_e^2\right)}{\partial s}
+ u_e\frac{\partial \left(\varrho_e u_e v_e\right)}{\partial n}
-2 \varrho_e \varOmega u_e v_e \\
=- u_e\frac {\partial p_e}{\partial s}
+\qquad
+\varrho_e u_e\left(\varOmega^2R_{OPs}+\frac{\partial\varOmega}{\partial
t}(R_{OPn}+n)-\frac{\partial^2 R_{Os}}{\partial t^2}\right)
\end{multlined}
\\
\begin{multlined}
u\frac{\partial \left(\varrho u\right)}{\partial t}
+ u\frac{\partial \left(\varrho u^2 \right)}{\partial s}
+ u\frac{\partial \left(\varrho u v \right)}{\partial n}
-2 \varrho \varOmega u v \\
=- u\frac {\partial p}{\partial s}
+\mu u\frac {\partial^2 u}{\partial n^2}
+\varrho u \left(\varOmega^2R_{OPs}+\frac{\partial\varOmega}{\partial
t}(R_{OPn}+n)-\frac{\partial^2 R_{Os}}{\partial t^2}\right)
\end{multlined}
\end{gather}
\end{subequations}
\end{document}
os números das equações são centralizados verticalmente nas subequações, em vez de serem definidos na última linha - é assim que todos os "subambientes" funcionam.
Responder2
Aqui está uma solução que preserva o uso de um align
ambiente dentro de um subequation
ambiente. Ele usa &\qquad
as linhas 2 e 4 para indentá-las em relação às linhas 1 e 3. Separadamente, ele elimina as diretivas (desnecessárias) \left
e \right
e usa itálico de texto em vez de itálico matemático (padrão) para os subscritos "OPn", " OPs" e "Os". Se você não gosta dos colchetes, basta substituí-los por parênteses redondos.
\documentclass{article}
\usepackage{amsmath}
\newcommand{\OPn}{\textit{OPn}}
\newcommand{\OPs}{\textit{OPs}}
\newcommand{\Os}{\textit{Os}}
\begin{document}
\begin{subequations} \label{eq:energy13}
\begin{align}
& u_e\frac{\partial (\varrho_e u_e )}{\partial t}
+ u_e\frac{\partial (\varrho_e u_e^2 )}{\partial s}
+ u_e\frac{\partial (\varrho_e u_e v_e)}{\partial n}
-2 \varrho_e \varOmega u_e v_e \nonumber \\
&\qquad=- u_e\frac {\partial p_e}{\partial s} +\qquad
+\varrho_e u_e\biggl[\varOmega^2R_{\OPs}
+\frac{\partial\varOmega}{\partial t}(R_{\OPn}+n)
-\frac{\partial^2 R_{\Os}}{\partial t^2}\biggr] \label{eq:energy13a}\\
& u\frac{\partial (\varrho u )}{\partial t}
+ u\frac{\partial (\varrho u^2 )}{\partial s}
+ u\frac{\partial (\varrho u v )}{\partial n}
-2 \varrho \varOmega u v \nonumber \\
&\qquad=- u\frac {\partial p }{\partial s}
+\mu u\frac {\partial^2 u}{\partial n^2}
+\varrho u \biggl[ \varOmega^2R_{\OPs}
+\frac{\partial\varOmega}{\partial t}(R_{\OPn}+n)
-\frac{\partial^2 R_{\Os}}{\partial t^2}\biggr] \label{eq:energy13b}
\end{align}
\end{subequations}
Here's a cross-reference to equation \eqref{eq:energy13b}.
\end{document}