Editar

Editar

Estou criando uma apresentação com a beamerturma. Suponha que eu queira escrever isto:

\begin{equation}
    f(x) 
    \only<1>{= \cos(x)}
    \only<2>{= 2\cos(x)}
\end{equation}

Estou com um problema porque no slide 2 a equação é mais longa e portanto a equação está se movendo. Se eu substituir onlypor uncover, haverá um espaço em branco no slide 2.

Eu tenho o mesmo problema com o alignmeio ambiente

\begin{align}
    f(x) &= \exp(x)\\
    \only<2>{&= \cos(x)}
    \only<3>{&= 2\cos(x)}
\end{align}

Como posso substituir parte de uma equação por outra coisa sem alterar o posicionamento da outra parte da equação?

Editar

Serei mais preciso. Gostaria de encontrar uma maneira eficiente de substituir o lado direito de uma igualdade (para equationou align) sem adicionar espaço em branco extra e de forma que mantenha o sinal de igual no mesmo lugar.

Por exemplo :

\begin{equation}
    \cos(x) = 
    \somecommand<1>{\dfrac{\exp{ix}+\exp{-ix}}{2}}
    \somecommand<2>{\sum_{n=0}^{\infty}\dfrac{(-1)^{n}}{2n+1}x^{2n+1}}
    ...
    \somecommand<n>{some other equality with a given lenght}
\end{equation}
  • Se \somecommandfor, \onlyentão toda a igualdade passará do slide 1 para o 2.
  • Se \somecommandfor \uncover, haverá um espaço em branco entre o sinal de igual e a expansão de Taylor no slide 2.
  • Usar \hphantomwith \altou \temporalpode ser uma solução, mas parece muito complicado usá-lo para mais de dois slides

Responder1

Existem várias maneiras de fazer isso. Aqui está um, usado \phantom{<stuff>}para preencher o que falta <stuff>na equação mais curta:

insira a descrição da imagem aqui

\documentclass{beamer}
\usepackage{amsmath}
\begin{document}

\begin{frame}
  \frametitle{A frame}

  \begin{equation}
    f(x) =
      \only<1>{\cos(x)\phantom{2}}
      \only<2>{2\cos(x)}
  \end{equation}

\end{frame}

\end{document}

A colocação do \phantom{<stuff>}depende de como você deseja examinar o conteúdo. Por exemplo, você também pode tentar

f(x) = \alt<2>{2}{\phantom{2}}\cos(x)

insira a descrição da imagem aqui

Veja também \temporalnobeamer documentação.


Para construções maiores, a melhor oferta que posso fazer é identificar o maior elemento (horizontal e verticalmente) no conjunto de equações e armazená-los em uma macro e usar outra macro como ajuste de espaço:

insira a descrição da imagem aqui

\documentclass{beamer}
\usepackage{amsmath}
\newcommand{\inserteqstrut}[1]{%
  \rlap{$\displaystyle#1$}%
  \phantom{\biggesteq}}
\begin{document}

% Store biggest equation in set
\newcommand{\biggesteq}{\sum_{n=0}^{\infty}\dfrac{(-1)^{n}}{2n+1}x^{2n+1}}

\begin{frame}
  \frametitle{A frame}

  \begin{equation}
    \cos(x) = 
    \only<1>{\inserteqstrut{\dfrac{\exp{ix}+\exp{-ix}}{2}}}
    \only<2>{\inserteqstrut{\biggesteq}}
    \only<3>{\inserteqstrut{\text{some equality}}}
  \end{equation}

\end{frame}

\end{document}

Se você tiver duas equações separadas que compõem o "maior", use uma combinação de \vphantom(para o mais alto/mais profundo) e \hphantom(para o mais largo/mais longo). Aqui está um exemplo:

insira a descrição da imagem aqui

\documentclass{beamer}
\usepackage{amsmath}
\newcommand{\inserteqstrut}[1]{%
  \rlap{$\displaystyle#1$}%
  \phantom{\biggesteq}}
\begin{document}

% Store biggest equation in set
\newcommand{\biggesteq}{%
  \vphantom{\sum_{n=0}^{\infty}n}% tallest/deepest
  \hphantom{\text{some other equality}}}% longest/widest

\begin{frame}
  \frametitle{A frame}

  \begin{equation}
    \cos(x) = 
    \only<1>{\inserteqstrut{\tfrac{\exp{ix}+\exp{-ix}}{2}}}
    \only<2>{\inserteqstrut{\sum_{n=0}^{\infty}n}}
    \only<3>{\inserteqstrut{\text{some other equality}}}
  \end{equation}

\end{frame}

\end{document}

Responder2

Embora a solução de Werner seja claramente mais limpa, acho que às vezes uma solução rápida e suja é simplesmente inserir algum espaçamento extra em uma das sobreposições alternativas. Por exemplo usei este código:

\frame{
  \frametitle{What: the Perron method}

  We split coordinates $x = (x_+, x_-)$%
\uncover<2->{, change the initial time $t_0$ in the unstable part}
\uncover<3->{and let $t_0 \to \infty$}
  \begin{alignat*}{2}
    x_+(t) &\mapsto
              \only<1  |handout:0>{e^{t\,A_+} \cdot x_+(0)\hspace{0.86cm}}
              \only<2-3|handout:0>{e^{(t-\alert{t_0})\,A_+} \cdot x_+(\alert{t_0})}
              \only<4-           >{\qquad\alert{\ldots}\hspace{1.59cm}}
           && \only< -3|handout:0>{+}
              \only<4-           >{-\,}
              \int_{\only<1  |handout:0>{0}
                    \only<2-3|handout:0>{\alert{\smash{t_0}}\!\!}
                    \only<4-           >{t}}
                  ^{\only<1-3|handout:0>{\smash{t}}
                    \only<4-           >{\alert{\smash{\infty}}}\!\!\!\!}
                  e^{(t-\tau)\,A_+} \cdot r_+((x_+,x_-)(\tau)) \d\tau,\\
    x_-(t) &\mapsto
              e^{t\,A_-} \cdot x_-(0)
           &&+\int_{0\,}^t e^{(t-\tau)\,A_-} \cdot r_-((x_+,x_-)(\tau)) \d\tau.
  \end{alignat*}
  \uncover<3->{%
    We consider this rewritten map $T$ for bounded curves
    $x \in B(\R;\R^n)$ only.
  }

}

para criar o slide 7 deesta apresentação do projetor.

Responder3

Finalmente resolvi meu problema usando esta solução (sei que não está de acordo com minha pergunta porque queria usar equationou align)

\documentclass{beamer}
\usepackage{amsmath,amssymb}
\renewcommand*{\a}[1]{\hat a_{#1}^{\vphantom{\dagger}}}
\newcommand*{\ad}[1]{\hat a_{#1}^{\dagger}}
\renewcommand*{\c}[1]{\hat{c}_{#1}^{\vphantom{\dagger}}}
\newcommand*{\cd}[1]{\hat{c}_{#1}^{\dagger}}
\renewcommand*{\H}{\hat{H}}
\newcommand*{\T}{\hat{T}}
\newcommand*{\dsum}[1]{\displaystyle\sum_{#1}}
\newcommand*{\dsumd}[3]{\displaystyle\sum_{#1=#2}^{#3}}
\newcommand*{\dprod}[1]{\displaystyle\prod_{#1}}
\newcommand*{\dprodd}[3]{\displaystyle\prod_{#1=#2}^{#3}}
\newcommand*{\dbigotimesd}[3]{\displaystyle\bigotimes_{#1=#2}^{#3}}
\newcommand*{\dbigoplusd}[3]{\displaystyle\bigoplus_{#1=#2}^{#3}}
\newcommand*{\ket}[1]{\left|#1\right>}
\newcommand*{\ep}[1]{\left(#1\right)}
\renewcommand*{\vec}[1]{\mathbf{#1}}
\renewcommand*{\det}[1]{\mathrm{det}\ep{#1}}

\begin{document}
\begin{frame}
    \begin{minipage}[h]{0.4\linewidth}
    $
    \T
    \only<1>{= \dbigoplusd{\alpha}{1}{N}\hat{T}_{\alpha}}
    \only<2-3>{= \dbigoplusd{\alpha}{1}{N}\hat{\vec{a}}^{\dagger}_{\alpha}T\hat{\vec{a}}^{\vphantom{\dagger}}_{\alpha}}
    \only<4->{= \dbigoplusd{\alpha}{1}{N}\dsumd{i}{1}{n}\omega_{i\alpha}\cd{i\alpha}\c{i\alpha}}
    $
    \end{minipage}
    \hfill
    \begin{minipage}[h]{0.5\linewidth}
        \uncover<3->{
        \begin{align*}
            \cd{i\alpha} &= \dsumd{j}{1}{n}U_{ji}^{\alpha}\ad{j\alpha} &
            \omega_{i\alpha} &< \omega_{i+1\alpha}
        \end{align*}
        }
    \end{minipage}
    \uncover<5->{
    $
    \uncover<6->{\ket{\Psi_{G}}= }
    \only<5->{\uncover<6->{\hat{P}_{G}^{m}}\ket{\Psi}}
    \uncover<5->{=\uncover<6->{\hat{P}_{G}^{m}}\dbigotimesd{\alpha}{1}{N}\dprodd{i}{1}{mn/N}\alt<5-6>{\c{i\alpha}}{\dsumd{j}{1}{n}U_{ji}^{\alpha}\ad{j\alpha}}\ket{0}}
    \only<10->{\equiv \dsum{\mathcal{C}}\det{U_{\mathcal{C}}}\ket{\mathcal{C}}}
    $
    }
    \begin{center}
    \uncover<8->{
    $
    \ket{\mathcal{C}} \equiv \dbigotimesd{\alpha}{1}{N}\dprodd{i}{1}{mn/N}\ad{i_{\alpha}\alpha}\ket{0}
    $
    }
    \uncover<9->{
    $
    \dsumd{\alpha}{1}{N}\ad{i\alpha}\a{i\alpha}\ket{\mathcal{C}} = m 
    \qquad
    \dsumd{i}{1}{n}\ad{i\alpha}\a{i\alpha}\ket{\mathcal{C}} = \dsumd{i}{1}{n}\ad{i\beta}\a{i\beta}\ket{\mathcal{C}} 
    $
    }
    \end{center}
\end{frame}
\end{document}

Espero que isso possa ajudar outra pessoa ...

informação relacionada