Enumere uma lista de equações

Enumere uma lista de equações

Considere o seguinte MWE:

\documentclass[12pt,a4paper]{article}

\usepackage[fleqn]{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{enumitem}

\newcommand{\C}{\mathbb{C}}
\begin{document}

\begin{enumerate}[label=(\roman*)]
\itemsep -0.2em
\item \begin{equation*}
    e^z =  \sum_{n=0} z^n / n!
\end{equation*}
\item \begin{equation*}
    \sin z = \sum_{n=0} (-1)^n z^{2n+1}/ (2n+1)!
\end{equation*}
\item \begin{equation*}
    \cos z = \sum_{n=0} (-1)^n z^{2n}/ 2n! \\
    \text{which converges } \forall \ z \in \C 
\end{equation*}
\item \begin{equation*}
    \log_e (1 - z) = - \sum_{n=1} z^n/n
\end{equation*}
\item \begin{equation*}
    (1 - z)^{-1} = \sum_{n=0} z^n \\
    \text{which converges for } |z| < 1 
\end{equation*}
\end{enumerate}

\end{document}

Como posso obter os números de enumeração (i, ii, etc) na mesma linha das equações?

Imagem1

Responder1

Não vejo nada em suas perguntas que não possa ser feito usando equation.

\documentclass[12pt,a4paper]{article}

\usepackage[fleqn]{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\newcommand{\C}{\mathbb{C}}

\newcounter{dummy}

\makeatletter
\newcommand{\leqnomode}{\tagsleft@true}
\makeatother

\begin{document}

\begin{equation}
   normalequation
\end{equation}

\bgroup
    \leqnomode
    \setcounter{dummy}{\theequation}
    \renewcommand{\theequation}{\roman{equation}}%

    \begin{equation}
        e^z =  \sum_{n=0} z^n / n!
    \end{equation}
    \begin{equation}
        \sin z = \sum_{n=0} (-1)^n z^{2n+1}/ (2n+1)!
    \end{equation}
    \begin{equation}
        \cos z = \sum_{n=0} (-1)^n z^{2n}/ 2n! \\
        \text{which converges } \forall \ z \in \C 
    \end{equation}
    \begin{equation}
        \log_e (1 - z) = - \sum_{n=1} z^n/n
    \end{equation}
    \begin{equation}
        (1 - z)^{-1} = \sum_{n=0} z^n \\
        \text{which converges for } |z| < 1 
    \end{equation}

    \setcounter{equation}{\thedummy}
\egroup

\bgroup
    \leqnomode
    \setcounter{dummy}{\theequation}
    \renewcommand{\theequation}{\roman{equation}}%

    \begin{equation}
        e^z =  \sum_{n=0} z^n / n!
    \end{equation}
    \begin{equation}
        \sin z = \sum_{n=0} (-1)^n z^{2n+1}/ (2n+1)!
    \end{equation}
    \begin{equation}
        \cos z = \sum_{n=0} (-1)^n z^{2n}/ 2n! \\
        \text{which converges } \forall \ z \in \C 
    \end{equation}
    \begin{equation}
        \log_e (1 - z) = - \sum_{n=1} z^n/n
    \end{equation}
    \begin{equation}
        (1 - z)^{-1} = \sum_{n=0} z^n \\
        \text{which converges for } |z| < 1 
    \end{equation}

    \setcounter{equation}{\thedummy}
\egroup

\begin{equation}
   normal equation
\end{equation}

\end{document}

insira a descrição da imagem aqui


\leqnomodeé emprestado deColocação de tags com amsmath

Responder2

Uma solução com o ambiente enumerado:

\documentclass[12pt, a4paper]{article}

\usepackage[fleqn]{mathtools}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{enumitem}

\newcommand{\C}{\mathbb{C}}

\begin{document}

\begin{enumerate}[label=(\roman*), leftmargin=*, itemsep=0.4ex, before={\everymath{\displaystyle}}]%
  \item $ e^z = \sum_{n=0} z^n / n! $ \label{eq-1}
  \item $ \sin z = \sum_{n=0} (-1)^n z^{2n+1}/ (2n+1)! $\label{eq-2}
  \item $ \begin{aligned}[t]
        & \cos z = \sum_{n=0} (-1)^n z^{2n}/ 2n!\\
        & \text{which converges $ \forall \ z \in \C $} \label{eq-3}
  \end{aligned}
  $
  \item $ \log_e (1 - z) = - \sum_{n=1} z^n/n $ \label{eq-4}
  \item $\begin{aligned}[t] & (1 - z)^{-1} = \sum_{n=0} z^n ,\\
        &\text{which converges for $ |z| < 1 $} \end{aligned}$ \label{eq-5}
\end{enumerate}
 It is easy to prove eq. \ref{eq-3}. 

\end{document} 

insira a descrição da imagem aqui

Responder3

Uma solução baseada naTécnicocomentário de.

\documentclass[12pt,a4paper]{article}

\usepackage[leqno, fleqn]{amsmath}
\usepackage{amssymb}
\usepackage{ mathtools }

\newcommand{\C}{\mathbb{C}}

\makeatletter
\newcommand{\leqnomode}{\tagsleft@true}
\newcommand{\reqnomode}{\tagsleft@false}
\makeatother

\newtagform{Alph}[\renewcommand{\theequation}{\Alph{equation}}]()
\newtagform{roman}[\renewcommand{\theequation}{\roman{equation}}]()
\newtagform{scroman}[\renewcommand{\theequation}{\scshape\roman{equation}}]
[]

\begin{document}

\usetagform{roman}
\begin{align}
   &e^z =  \sum_{n=0} z^n / n! \\
   &\sin z = \sum_{n=0} (-1)^n z^{2n+1}/ (2n+1)! \\
   &\cos z = \sum_{n=0} (-1)^n z^{2n}/ 2n! \text{   which converges } 
   \forall \ z \in \C  \\
   &\log_e (1 - z) = - \sum_{n=1} z^n/n \\
   &(1 - z)^{-1} = \sum_{n=0} z^n  \text{   which converges for } |z| < 1 
\end{align}

%\setcounter{equation}{0}
\end{document}

Referências:

Alternar entre as opções leqno e reqno (de amsmath) no mesmo documento

Como alterar números para algarismos romanos no ambiente de alinhamento

Equações

informação relacionada