
Eu li que o eqnarray não deveria mais ser usado e também às vezes obtenho resultados por ele não ser bonito;
Tento substituí-lo - no entanto, se eu tiver uma equação em várias linhas, eqnarray ficará lindo:
\begin{eqnarray*}
\mathbb{P}\bigg( \big \vert \hat{\tau}_{jk}-\tau_{jk} \big \vert \geq \epsilon \bigg) &=& \mathbb{P}\bigg( T \cdot \big \vert \hat{\tau}_{jk}-\tau_{jk} \big \vert \geq T \epsilon \bigg) =\mathbb{P}\bigg( \big \vert f(X_1, \ldots, X_T)-\mathbb{E}f(X_1, \ldots,X_T) \big \vert \geq T \cdot \epsilon \bigg) \\
&\leq& 2\exp\left( \frac{2\epsilon^2}{Tc^2\big(1+2\sum_{k=1}^T\phi(k)\big)}\right)
\end{eqnarray*}
Obtenho o belo resultado, que = e $<=$ estão primeiro um abaixo do outro, mas também que há um espaço antes do sinal = e algum espaço depois dele; O mesmo acontece com <=: Há algum espaço antes e depois que fica lindo;
Como posso conseguir isso com o pacote amsmath? Eu tentei alinhar, mas não consegui fazer com que ficasse assim
Responder1
Eu não teria dúvidas se me pedissem para escolher entre a versão eqnarray
e a align
(compare com a equação final de linha única).
\documentclass{article}
\usepackage{amsmath,amssymb}
\begin{document}
\begin{eqnarray*}
\mathbb{P}\bigg( \big \vert \hat{\tau}_{jk}-\tau_{jk} \big \vert \geq \epsilon \bigg) &=& \mathbb{P}\bigg( T \cdot \big \vert \hat{\tau}_{jk}-\tau_{jk} \big \vert \geq T \epsilon \bigg) =\mathbb{P}\bigg( \big \vert f(X_1, \ldots, X_T)-\mathbb{E}f(X_1, \ldots,X_T) \big \vert \geq T \cdot \epsilon \bigg) \\
&\leq& 2\exp\left( \frac{2\epsilon^2}{Tc^2\big(1+2\sum_{k=1}^T\phi(k)\big)}\right)
\end{eqnarray*}
\begin{align*}
\mathbb{P}(\lvert \hat{\tau}_{jk}-\tau_{jk}\rvert \geq \epsilon)
&= \mathbb{P}(T\lvert\hat{\tau}_{jk}-\tau_{jk}\rvert \geq T \epsilon ) \vphantom{\Bigg|} \\
&= \mathbb{P}(\lvert f(X_1, \dots, X_T)-\mathbb{E}f(X_1, \dots,X_T)\rvert \geq T\epsilon) \\
&\leq 2\exp\biggl(\frac{2\epsilon^2}{Tc^2\bigl(1+2\sum_{k=1}^T\phi(k)\bigr)}\biggr)
\end{align*}
\begin{equation*}
\mathbb{P}(\lvert \hat{\tau}_{jk}-\tau_{jk}\rvert \geq \epsilon)
=\mathbb{P}(T\lvert\hat{\tau}_{jk}-\tau_{jk}\rvert \geq T \epsilon)
\end{equation*}
\end{document}
Você consegue os grandes espaços (feios)? Sim claro.
\documentclass{article}
\usepackage{amsmath,amssymb}
\begin{document}
\begin{alignat*}{2}
\mathbb{P}(\lvert \hat{\tau}_{jk}-\tau_{jk}\rvert \geq \epsilon)
&\quad=\quad
&& \mathbb{P}(T\lvert\hat{\tau}_{jk}-\tau_{jk}\rvert \geq T \epsilon ) \vphantom{\Bigg|} \\
&\quad=\quad
&& \mathbb{P}(\lvert f(X_1, \dots, X_T)-\mathbb{E}f(X_1, \dots,X_T)\rvert \geq T\epsilon) \\
&\quad\leq\quad
&& 2\exp\biggl(\frac{2\epsilon^2}{Tc^2\bigl(1+2\sum_{k=1}^T\phi(k)\bigr)}\biggr)
\end{alignat*}
\begin{equation*}
\mathbb{P}(\lvert \hat{\tau}_{jk}-\tau_{jk}\rvert \geq \epsilon)
=\mathbb{P}(T\lvert\hat{\tau}_{jk}-\tau_{jk}\rvert \geq T \epsilon)
\end{equation*}
\end{document}
Compare novamente.