Como inserir pontuação no cabeçalho LaTeX (fancyheadings)?

Como inserir pontuação no cabeçalho LaTeX (fancyheadings)?

Estou seguindo este guia aquihttp://www.fi.infn.it/pub/tex/doc/orig/fancyheadings.pdf

para opções de formatação de cabeçalho de látex 'fancyheadings'. Na página 5 dá um exemplo de como transformar os cabeçalhos de cada página no capítulo e no título do capítulo.

Por exemplo - o código que eles fornecem:

\lhead[\fancyplain{}{\slshape \rightmark}]{\fancyplain{}%
{\slshape \leftmark}}

renderia:

"Chapter 1 Introduction"no cabeçalho da página de saída, onde Capítulo 1 é o Capítulo e Introdução é o Título do Capítulo derivado do \chapter{Introduction}início da página do meu capítulo.

Minha pergunta é: como diabos posso fazer com que os cabeçalhos produzam algo como:

"Chapter 1: Introduction"ou "Chapter 1 | Introduction"ou algo com alguma pontuação entre o capítulo e o título do capítulo.

Por favor, deixe-me saber se devo postar mais código - espero que alguém saiba a resposta rapidamente, mas deixe-me saber se mais informações forem necessárias.

Responder1

A documentação emitida em 1996 deve ser examinada com suspeita. Na verdade, o fancyheadingspacote está obsoleto há cerca de 20 anos.

Você tem que olhar a fancyhdrdocumentação e redefinir o \chaptermark.

\documentclass{book}
\usepackage{blindtext}

\usepackage{fancyhdr}

\pagestyle{fancy}
\fancyhf{} % clear all fields
\fancyhead[LE,RO]{\slshape\rightmark}
\fancyhead[RE,LO]{\slshape\leftmark}
\fancyfoot[C]{\thepage}
\renewcommand{\chaptermark}[1]{%
  \markboth{\MakeUppercase{%
    \ifnum\value{chapter}>0
      Chapter \thechapter\ $|$ % with a space!
    \fi
    #1%
  }}{}%
}

\begin{document}

\blinddocument

\end{document}

Responder2

insira a descrição da imagem aqui

Você pode personalizá-lo usando o seguinte:

  • Para o nome do capítulo use \renewcommand{\chaptermark}[1]{ \markboth{#1}{} }onde #1é o nome do capítulo. Você pode, por exemplo, substituir #1por \textit{#1}e o nome do capítulo ficará em itálico nos cabeçalhos. O mesmo conceito se aplica ao nome da seção\renewcommand{\sectionmark}[1]{ \markright{#1} }
  • A palavra Chapterpode ser alterada usando \renewcommand{\chaptername}{Chapter}. Você pode usar uma forma abreviada comoCh
  • Os cabeçalhos são personalizados usando \fancypagestylee o estilo de página é definido usando \pagestyle{mainmatter}. Para remover estilos de página de locais indesejados (especialmente no início), use \thispagestyle{empty}

Aqui está um código completo que fornecerá Chapter 1: Introductioncabeçalhos:

\documentclass[twoside]{thesis}

    \usepackage{fancyhdr}

        \pagestyle{fancy} % allows for more advanced header and footer formats

                % Customizations
                \renewcommand{\chaptermark}[1]{ \markboth{#1}{} }  % customize chapter name here
                \renewcommand{\chaptername}{Chapter}
                \renewcommand{\sectionmark}[1]{ \markright{#1} } % customize section name here

                % Define headers
                \fancypagestyle{mainmatter}{
                                                % Header and footer lines
                                                \renewcommand{\headrulewidth}{0.5 pt}
                                                \renewcommand{\footrulewidth}{0 pt}

                                                % Headers
                                                \fancyhead{} % clear header field
                                                \fancyhead[RO]{ \textbf{ \chaptername\ \thechapter:\ \leftmark } \hspace{4mm} \thepage } % customize chapter name header here
                                                \fancyhead[LE]{ \thepage \hspace{4mm} \thesection \textbf{ \rightmark }  } % customize section name header here

                                                % Foot
                                                \fancyfoot{} % clear foot fields
                                                \fancyfoot[LE, RO]{By: Al-Motasem I. Aldaoudeyeh}
                                        }


\begin{document}

\thispagestyle{empty}

\title{Development of a Generalized PV Model in MATLAB/Simulink Using Datasheet Values}



\author{Al-Motasem I. Aldaoudeyeh
    \thanks{Al-Motasem I. Aldaoudeyeh is with the Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, 58102 USA e-mail: [email protected]}
}


\maketitle


\thispagestyle{empty}
\begin{abstract}

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

\end{abstract}
\thispagestyle{empty}


\pagestyle{mainmatter}
\chapter{Chapter Name}


\section{Introduction}
\label{section:introduction}

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.


\section{Numerical Results and Discussion}
\label{sec:results}

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit.


\section{Conclusions}
\label{sec:conclusions}


    This paper proposes an improved single-diode modeling approach for PV modules suitable for a broad range of the PV technologies available today, including modules on tandem cell structures. After establishing the model (which has an overall of seven parameters), the paper devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficients values as provided in most manufacturers' datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point lies within $1\%$ limit, and the error in its corresponding voltage and current is almost always within $2\%$ limit. Further, for both maximum power point and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.


\end{document}

informação relacionada