Melhorando batatas TikZ

Melhorando batatas TikZ

Meu objetivo é fornecer ferramentas para desenhar formas irregulares com mais facilidade. Claro, estou ciente dos gráficos suaves fornecidos pelo TikZ, mas meu objetivo é permitir uma abordagem alternativa. Muitas vezes, as formas são mais ou menos definidas por alguns pontos extremos, nos quais a distância ao baricentro da forma é extrema (os exemplos estão abaixo). Consegui obter algumas formas, mas apenas às custas de emprestar rotinas de alguns outros lugares, que cito, e essas rotinas parecem ser mais complexas do que o necessário. Além disso, meu código trata apenas 4 coordenadas. Em princípio, agora sei como estendê-lo, mas sinto que deveria simplificar as coisas antes. Este é o meu código até agora:

\documentclass{article}
\usepackage{tikz}
\usetikzlibrary{calc}
\usetikzlibrary{hobby}
\makeatletter % from https://tex.stackexchange.com/a/283273/121799
% Here we define the comparison macro for pairs (a,b)
% We assume decimal numbers acceptable to \ifdim tests
\long\def\xintdothis #1#2\xintorthat #3{\fi #1}%
\let\xintorthat \@firstofone

\long\def\@thirdoffour  #1#2#3#4{#3}%
\long\def\@fourthoffour #1#2#3#4{#4}%

\def\IfFirstPairIsGreaterTF #1#2{\@IfFirstPairIsGreaterTF #1,#2,}%

\def\@IfFirstPairIsGreaterTF #1,#2,#3,#4,{%
    \ifdim #1\p@=#3\p@
       \xintdothis{%
         \ifdim #2\p@>#4\p@\expandafter\@firstoftwo
         \else\expandafter\@secondoftwo\fi}\fi
    \ifdim #1\p@>#3\p@\expandafter\@thirdoffour
                      \else\expandafter\@fourthoffour\fi
    \xintorthat{}%
}%

% not needed for numerical inputs
% \catcode`! 3
% \catcode`? 3

% Here there is a very strange \romannumeral0\romannumeral0, this is
% due to some convoluted scheme to avoid double spaces or no spaces
% in between coordinate pairs. Trust me.
\def\QSpairs {\romannumeral0\romannumeral0\qspairs }%
% first we check if empty list
\def\qspairs   #1{\expandafter\qspairs@a\romannumeral-`0#1(!)(?)}%
\def\qspairs@a #1(#2{\ifx!#2\expandafter\qspairs@abort\else
                        \expandafter\qspairs@b\fi (#2}%
\edef\qspairs@abort #1(?){\space\space}%
%
% we check if empty of single and if not pick up the first as Pivot:
\def\qspairs@b #1(#2)#3(#4){\ifx?#4\xintdothis\qspairs@empty\fi
                   \ifx!#4\xintdothis\qspairs@single\fi
                   \xintorthat \qspairs@separate {}{}{#2}(#4)}%
\def\qspairs@empty  #1(?){ }%
\edef\qspairs@single #1#2#3#4(?){\space\space(#3)}%
\def\qspairs@separate #1#2#3#4(#5)%
{%
    \ifx!#5\expandafter\qspairs@separate@done\fi
    \IfFirstPairIsGreaterTF {#5}{#3}%
          \qspairs@separate@appendtogreater
          \qspairs@separate@appendtosmaller {#5}{#1}{#2}{#3}%
}%
%
\def\qspairs@separate@appendtogreater #1#2{\qspairs@separate {#2 (#1)}}%
\def\qspairs@separate@appendtosmaller #1#2#3{\qspairs@separate {#2}{#3 (#1)}}%
%
\def\qspairs@separate@done\IfFirstPairIsGreaterTF #1#2%
    \qspairs@separate@appendtogreater
    \qspairs@separate@appendtosmaller #3#4#5#6(?)%
{%
    \expandafter\qspairs@f\expandafter
    {\romannumeral0\qspairs@b #4(!)(?)}{\qspairs@b #5(!)(?)}{ (#2)}%
}%
%
\def\qspairs@f #1#2#3{#2#3#1}%
%
% \catcode`! 12
% \catcode`? 12

\makeatother
\makeatletter % from https://tex.stackexchange.com/a/412901/121799
\newcommand{\Distance}[3]{% % from https://tex.stackexchange.com/q/56353/121799
\tikz@scan@one@point\pgfutil@firstofone($#1-#2$)\relax  
\pgfmathsetmacro{#3}{veclen(\the\pgf@x,\the\pgf@y)/28.45274}
}
\makeatother 
\newcount\nbofwords
\makeatletter% from https://tex.stackexchange.com/a/12819/121799
\def\myutil@empty{}
\def\multiwords#1 #2\@nil{% 
 \def\NextArg{#2}%
 \advance\nbofwords by  1 %   
 \expandafter\edef\csname word\@alph\nbofwords\endcsname{#1}% 
 \ifx\myutil@empty\NextArg
     \let\next\@gobble
 \fi
 \next#2\@nil
}%    
\def\GetWords#1{%
   \let\next\multiwords 
   \nbofwords=0 %
   \expandafter\next#1 \@nil %
}% 
\makeatother

\long\def\First(#1,#2){#1}
\long\def\Second(#1,#2){#2}
\tikzset{declare
function={interpolator(\x,\xmin,\xmax,\rmin,\rmax)=(\rmin+\rmax)/2+((\rmin-\rmax)/2)*cos((\x-\xmin)*(180/(\xmax-\xmin)));}}
%\tikzset{declare function={PotatoeRadius(\x,\angleA,\angleB,\angleC,\angleD,\distanceA,\distanceB,\distanceC,\distanceD)=\distanceA+(\x-\angleA)*((\distanceB-\distanceA)/(\angleB-\angleA)+(\x-\angleB)*(((-1)*((\distanceB-\distanceA)/(\angleB-\angleA))+(\distanceC-\distanceB)/(\angleC-\angleB))/(\angleC-\angleA)+(((-1)*(((-1)*((\distanceB-\distanceA)/(\angleB-\angleA))+(\distanceC-\distanceB)/(\angleC-\angleB))/(\angleC-\angleA))+((-1)*((\distanceC-\distanceB)/(\angleC-\angleB))+(\distanceD-\distanceC)/(\angleD-\angleC))/(\angleD-\angleB))*(\x-\angleC))/(\angleD-\angleA)));}}
%(\angleC*(\angleC-\angleD)*\angleD*((\distanceA-\distanceB)*(\angleC-\x)*(\angleD-\x)*\x+pow(\angleA,3)*(-(\angleC*pow(\angleD,2)*\distanceB)+\angleD*(\distanceB-\distanceC)*(\angleD-\x)*\x+\angleC*(\distanceB-\distanceD)*pow(\x,2)+pow(\angleC,2)*(\angleD*\distanceB+(-\distanceB+\distanceD)*\x))+pow(\angleB,3)*(-(\angleA*pow(\angleD,2)*\distanceC)-\angleD*(\distanceA-\distanceC)*(\angleD-\x)*\x+\angleA*(\distanceC-\distanceD)*pow(\x,2)+pow(\angleC,2)*(-(\angleD*\distanceA)+\angleA*\distanceD+\distanceA*\x-\distanceD*\x)+pow(\angleA,2)*(\angleD*\distanceC-\distanceC*\x+\distanceD*\x)+\angleC*(pow(\angleD,2)*\distanceA-pow(\angleA,2)*\distanceD+(-\distanceA+\distanceD)*pow(\x,2)))+pow(\angleA,2)*(-(\angleD*(\distanceB-\distanceC)*(\angleD-\x)*\x*(\angleD+\x))-pow(\angleC,3)*(\angleD*\distanceB+(-\distanceB+\distanceD)*\x)+\angleC*(pow(\angleD,3)*\distanceB+(-\distanceB+\distanceD)*pow(\x,3)))+\angleA*(pow(\angleD,2)*(\distanceB-\distanceC)*(\angleD-\x)*pow(\x,2)+pow(\angleC,3)*(pow(\angleD,2)*\distanceB+(-\distanceB+\distanceD)*pow(\x,2))-pow(\angleC,2)*(pow(\angleD,3)*\distanceB+(-\distanceB+\distanceD)*pow(\x,3)))+pow(\angleB,2)*(\angleD*(\distanceA-\distanceC)*(\angleD-\x)*\x*(\angleD+\x)+pow(\angleC,3)*(\angleD*\distanceA-\angleA*\distanceD-\distanceA*\x+\distanceD*\x)-pow(\angleA,3)*(\angleD*\distanceC+(-\distanceC+\distanceD)*\x)+\angleC*(-(pow(\angleD,3)*\distanceA)+pow(\angleA,3)*\distanceD+(\distanceA-\distanceD)*pow(\x,3))+\angleA*(pow(\angleD,3)*\distanceC+(-\distanceC+\distanceD)*pow(\x,3)))+\angleB*(-(pow(\angleD,2)*(\distanceA-\distanceC)*(\angleD-\x)*pow(\x,2))+pow(\angleC,3)*(-(pow(\angleD,2)*\distanceA)+pow(\angleA,2)*\distanceD+(\distanceA-\distanceD)*pow(\x,2))+pow(\angleA,3)*(pow(\angleD,2)*\distanceC+(-\distanceC+\distanceD)*pow(\x,2))+pow(\angleC,2)*(pow(\angleD,3)*\distanceA-pow(\angleA,3)*\distanceD+(-\distanceA+\distanceD)*pow(\x,3))-pow(\angleA,2)*(pow(\angleD,3)*\distanceC+(-\distanceC+\distanceD)*pow(\x,3))))/((\angleA-\angleB)*(\angleA-\angleC)*(\angleB-\angleC)*(\angleA-\angleD)*(\angleB-\angleD)*(\angleC-\angleD)));}}
\newcommand{\DrawArcAngle}[6][]{% just for emergencies
\pgfmathanglebetweenpoints{\pgfpointanchor{#3}{center}}{\pgfpointanchor{#2}{center}}
\xdef\angleA{\pgfmathresult}
\pgfmathanglebetweenpoints{\pgfpointanchor{#3}{center}}{\pgfpointanchor{#4}{center}}
\xdef\angleB{\pgfmathresult}
\draw[#1] ($(#3)+(\angleA:#5)$) arc [start angle=\angleA,end angle=\angleB,radius=#5]
#6;
}
\newcommand{\DrawPotato}[5][]{
\coordinate (PotatoCenter) at (barycentric cs:#2=1,#3=1,#4=1,#5=1);
\pgfmathanglebetweenpoints{\pgfpointanchor{PotatoCenter}{center}}{\pgfpointanchor{#2}{center}}
\xdef\angleA{\pgfmathresult}
\pgfmathanglebetweenpoints{\pgfpointanchor{PotatoCenter}{center}}{\pgfpointanchor{#3}{center}}
\xdef\angleB{\pgfmathresult}
\pgfmathanglebetweenpoints{\pgfpointanchor{PotatoCenter}{center}}{\pgfpointanchor{#4}{center}}
\xdef\angleC{\pgfmathresult}
\pgfmathanglebetweenpoints{\pgfpointanchor{PotatoCenter}{center}}{\pgfpointanchor{#5}{center}}
\xdef\angleD{\pgfmathresult}

\Distance{(PotatoCenter)}{(#2)}{\distanceA}
\Distance{(PotatoCenter)}{(#3)}{\distanceB}
\Distance{(PotatoCenter)}{(#4)}{\distanceC}
\Distance{(PotatoCenter)}{(#5)}{\distanceD}
\xdef\coordList{(\angleA,\distanceA) (\angleB,\distanceB) (\angleC,\distanceC) (\angleD,\distanceD)}%
\typeout{\coordList}
\xdef\sortedList{\QSpairs{\coordList}}%
\GetWords{\sortedList}
\xdef\NewList{\worda,\wordb,\wordc,\wordd}%
\xdef\NewList{\expandafter\First\worda/\expandafter\Second\worda, 
\expandafter\First\wordb/\expandafter\Second\wordb,
\expandafter\First\wordc/\expandafter\Second\wordc,
\expandafter\First\wordd/\expandafter\Second\wordd}% this list is not used
\xdef\angleA{\expandafter\First\worda}%
\xdef\distanceA{\expandafter\Second\worda}%
\xdef\angleB{\expandafter\First\wordb}%
\xdef\distanceB{\expandafter\Second\wordb}%
\xdef\angleC{\expandafter\First\wordc}%
\xdef\distanceC{\expandafter\Second\wordc}%
\xdef\angleD{\expandafter\First\wordd}%
\xdef\distanceD{\expandafter\Second\wordd}%
\begin{scope}[shift=(PotatoCenter)]
\draw[#1,smooth,samples=50] plot[variable=\x,domain=\angleA:\angleB] %
(\x:{interpolator(\x,\angleA,\angleB,\distanceA,\distanceB)})
-- 
plot[variable=\x,domain=\angleB:\angleC] %
(\x:{interpolator(\x,\angleB,\angleC,\distanceB,\distanceC)})
--
plot[variable=\x,domain=\angleC:\angleD] %
(\x:{interpolator(\x,\angleC,\angleD,\distanceC,\distanceD)})
--
plot[variable=\x,domain=\angleD:{\angleA+360}] %
(\x:{interpolator(\x,\angleD,{\angleA+360},\distanceD,\distanceA)});
\end{scope}
}
\begin{document}
\begin{tabular}{cc}
potato & potato (ordering) \\
\begin{tikzpicture}
\coordinate (A) at (-1,1);
\coordinate (B) at (3,0.5);
\coordinate (C) at (4,-1);
\coordinate (D) at (1,-1);
\foreach \p in {A,B,C,D}
{\draw[fill=black] (\p) circle (1pt);}
\DrawPotato[blue]{A}{B}{C}{D}
\draw[red] plot[smooth cycle,tension=1] coordinates{(A) (B) (C) (D)};
\end{tikzpicture}& 
\begin{tikzpicture}
\coordinate (A) at (-1,1);
\coordinate (B) at (3,0.5);
\coordinate (C) at (4,-1);
\coordinate (D) at (1,-1);
\foreach \p in {A,B,C,D}
{\draw[fill=black] (\p) circle (1pt);}
\DrawPotato[blue]{A}{C}{B}{D}
\draw[purple] plot[smooth cycle,tension=1] coordinates{(A) (C) (B) (D)};
\end{tikzpicture}
\end{tabular}
\begin{tabular}{ll}
filled potato&filled peanut\\
\begin{tikzpicture}
\coordinate (A) at (-1,1);
\coordinate (B) at (3,0.5);
\coordinate (C) at (4,-1);
\coordinate (D) at (1,-1);
\foreach \p in {A,B,C,D}
{\draw[fill=black] (\p) circle (1pt);}
\DrawPotato[fill=blue]{A}{C}{B}{D}
\end{tikzpicture}
&
\begin{tikzpicture}
\coordinate (A) at (-1,1);
\coordinate (B) at (2,0.5);
\coordinate (C) at (4,-1);
\coordinate (D) at (1,-1);
\foreach \p in {A,B,C,D}
{\draw[fill=black] (\p) circle (1pt);}
\DrawPotato[blue,fill=red]{A}{B}{C}{D}
\begin{scope}[closed hobby]
\draw[thick] plot  coordinates{(A) (B) (C) (D)};
\end{scope}
\end{tikzpicture}
\end{tabular}
\end{document}

insira a descrição da imagem aqui

Não é difícil ver que o código é uma verdadeira bagunça, mas ele faz aproximadamente o que eu quero, ou seja, desenha batatas definidas pelos pontos extremos (marcados por marcadores pretos). Para comparação (comparações nunca são justas ;-) também desenho os resultados dos gráficos suaves mencionados acima. Minha verdadeira questão é como tornar as coisas mais simples, o mais importante

  • a ordem angular das coordenadas,

  • minha maneira de tornar as formas "preenchíveis" certamente não é a ideal,

  • a análise das coordenadas ordenadas para uma macro que aceita um número arbitrário de pontos (ou seja, 4 ou mais pontos). Quaisquer comentários são muito bem-vindos.

EDITAR: Adicionada a saída do algoritmo Hobby na figura do amendoim para comparação.

ATUALIZAR: Corrigida "batata". Está claro para mim que com alguns ajustes adicionais é possível recriar essas formas com plotagens suaves ou plotagens de Hobby. Contudo, o objectivo aqui é evitar estes ajustamentos adicionais. Claro, se alguém pudesse me indicar um dicionário que me permita traduzir o código da batata para a linguagem Hobby, seria ótimo.

SEGUNDA ATUALIZAÇÃO: adicionei uma animação simples que ilustra o que o código faz até agora.

\documentclass{beamer}
\usepackage{tikz}
\usetikzlibrary{calc}
%\usetikzlibrary{hobby}
\makeatletter % from https://tex.stackexchange.com/a/283273/121799
% Here we define the comparison macro for pairs (a,b)
% We assume decimal numbers acceptable to \ifdim tests
\long\def\xintdothis #1#2\xintorthat #3{\fi #1}%
\let\xintorthat \@firstofone

\long\def\@thirdoffour  #1#2#3#4{#3}%
\long\def\@fourthoffour #1#2#3#4{#4}%

\def\IfFirstPairIsGreaterTF #1#2{\@IfFirstPairIsGreaterTF #1,#2,}%

\def\@IfFirstPairIsGreaterTF #1,#2,#3,#4,{%
    \ifdim #1\p@=#3\p@
       \xintdothis{%
         \ifdim #2\p@>#4\p@\expandafter\@firstoftwo
         \else\expandafter\@secondoftwo\fi}\fi
    \ifdim #1\p@>#3\p@\expandafter\@thirdoffour
                      \else\expandafter\@fourthoffour\fi
    \xintorthat{}%
}%

% not needed for numerical inputs
% \catcode`! 3
% \catcode`? 3

% Here there is a very strange \romannumeral0\romannumeral0, this is
% due to some convoluted scheme to avoid double spaces or no spaces
% in between coordinate pairs. Trust me.
\def\QSpairs {\romannumeral0\romannumeral0\qspairs }%
% first we check if empty list
\def\qspairs   #1{\expandafter\qspairs@a\romannumeral-`0#1(!)(?)}%
\def\qspairs@a #1(#2{\ifx!#2\expandafter\qspairs@abort\else
                        \expandafter\qspairs@b\fi (#2}%
\edef\qspairs@abort #1(?){\space\space}%
%
% we check if empty of single and if not pick up the first as Pivot:
\def\qspairs@b #1(#2)#3(#4){\ifx?#4\xintdothis\qspairs@empty\fi
                   \ifx!#4\xintdothis\qspairs@single\fi
                   \xintorthat \qspairs@separate {}{}{#2}(#4)}%
\def\qspairs@empty  #1(?){ }%
\edef\qspairs@single #1#2#3#4(?){\space\space(#3)}%
\def\qspairs@separate #1#2#3#4(#5)%
{%
    \ifx!#5\expandafter\qspairs@separate@done\fi
    \IfFirstPairIsGreaterTF {#5}{#3}%
          \qspairs@separate@appendtogreater
          \qspairs@separate@appendtosmaller {#5}{#1}{#2}{#3}%
}%
%
\def\qspairs@separate@appendtogreater #1#2{\qspairs@separate {#2 (#1)}}%
\def\qspairs@separate@appendtosmaller #1#2#3{\qspairs@separate {#2}{#3 (#1)}}%
%
\def\qspairs@separate@done\IfFirstPairIsGreaterTF #1#2%
    \qspairs@separate@appendtogreater
    \qspairs@separate@appendtosmaller #3#4#5#6(?)%
{%
    \expandafter\qspairs@f\expandafter
    {\romannumeral0\qspairs@b #4(!)(?)}{\qspairs@b #5(!)(?)}{ (#2)}%
}%
%
\def\qspairs@f #1#2#3{#2#3#1}%
%
% \catcode`! 12
% \catcode`? 12

\makeatother
\makeatletter % from https://tex.stackexchange.com/a/412901/121799
\newcommand{\Distance}[3]{% % from https://tex.stackexchange.com/q/56353/121799
\tikz@scan@one@point\pgfutil@firstofone($#1-#2$)\relax  
\pgfmathsetmacro{#3}{veclen(\the\pgf@x,\the\pgf@y)/28.45274}
}
\makeatother 
\newcount\nbofwords
\makeatletter% from https://tex.stackexchange.com/a/12819/121799
\def\myutil@empty{}
\def\multiwords#1 #2\@nil{% 
 \def\NextArg{#2}%
 \advance\nbofwords by  1 %   
 \expandafter\edef\csname word\@alph\nbofwords\endcsname{#1}% 
 \ifx\myutil@empty\NextArg
     \let\next\@gobble
 \fi
 \next#2\@nil
}%    
\def\GetWords#1{%
   \let\next\multiwords 
   \nbofwords=0 %
   \expandafter\next#1 \@nil %
}% 
\makeatother

\long\def\First(#1,#2){#1}
\long\def\Second(#1,#2){#2}
\tikzset{declare
function={interpolator(\x,\xmin,\xmax,\rmin,\rmax)=(\rmin+\rmax)/2+((\rmin-\rmax)/2)*cos((\x-\xmin)*(180/(\xmax-\xmin)));}}
%\tikzset{declare function={PotatoeRadius(\x,\angleA,\angleB,\angleC,\angleD,\distanceA,\distanceB,\distanceC,\distanceD)=\distanceA+(\x-\angleA)*((\distanceB-\distanceA)/(\angleB-\angleA)+(\x-\angleB)*(((-1)*((\distanceB-\distanceA)/(\angleB-\angleA))+(\distanceC-\distanceB)/(\angleC-\angleB))/(\angleC-\angleA)+(((-1)*(((-1)*((\distanceB-\distanceA)/(\angleB-\angleA))+(\distanceC-\distanceB)/(\angleC-\angleB))/(\angleC-\angleA))+((-1)*((\distanceC-\distanceB)/(\angleC-\angleB))+(\distanceD-\distanceC)/(\angleD-\angleC))/(\angleD-\angleB))*(\x-\angleC))/(\angleD-\angleA)));}}
%(\angleC*(\angleC-\angleD)*\angleD*((\distanceA-\distanceB)*(\angleC-\x)*(\angleD-\x)*\x+pow(\angleA,3)*(-(\angleC*pow(\angleD,2)*\distanceB)+\angleD*(\distanceB-\distanceC)*(\angleD-\x)*\x+\angleC*(\distanceB-\distanceD)*pow(\x,2)+pow(\angleC,2)*(\angleD*\distanceB+(-\distanceB+\distanceD)*\x))+pow(\angleB,3)*(-(\angleA*pow(\angleD,2)*\distanceC)-\angleD*(\distanceA-\distanceC)*(\angleD-\x)*\x+\angleA*(\distanceC-\distanceD)*pow(\x,2)+pow(\angleC,2)*(-(\angleD*\distanceA)+\angleA*\distanceD+\distanceA*\x-\distanceD*\x)+pow(\angleA,2)*(\angleD*\distanceC-\distanceC*\x+\distanceD*\x)+\angleC*(pow(\angleD,2)*\distanceA-pow(\angleA,2)*\distanceD+(-\distanceA+\distanceD)*pow(\x,2)))+pow(\angleA,2)*(-(\angleD*(\distanceB-\distanceC)*(\angleD-\x)*\x*(\angleD+\x))-pow(\angleC,3)*(\angleD*\distanceB+(-\distanceB+\distanceD)*\x)+\angleC*(pow(\angleD,3)*\distanceB+(-\distanceB+\distanceD)*pow(\x,3)))+\angleA*(pow(\angleD,2)*(\distanceB-\distanceC)*(\angleD-\x)*pow(\x,2)+pow(\angleC,3)*(pow(\angleD,2)*\distanceB+(-\distanceB+\distanceD)*pow(\x,2))-pow(\angleC,2)*(pow(\angleD,3)*\distanceB+(-\distanceB+\distanceD)*pow(\x,3)))+pow(\angleB,2)*(\angleD*(\distanceA-\distanceC)*(\angleD-\x)*\x*(\angleD+\x)+pow(\angleC,3)*(\angleD*\distanceA-\angleA*\distanceD-\distanceA*\x+\distanceD*\x)-pow(\angleA,3)*(\angleD*\distanceC+(-\distanceC+\distanceD)*\x)+\angleC*(-(pow(\angleD,3)*\distanceA)+pow(\angleA,3)*\distanceD+(\distanceA-\distanceD)*pow(\x,3))+\angleA*(pow(\angleD,3)*\distanceC+(-\distanceC+\distanceD)*pow(\x,3)))+\angleB*(-(pow(\angleD,2)*(\distanceA-\distanceC)*(\angleD-\x)*pow(\x,2))+pow(\angleC,3)*(-(pow(\angleD,2)*\distanceA)+pow(\angleA,2)*\distanceD+(\distanceA-\distanceD)*pow(\x,2))+pow(\angleA,3)*(pow(\angleD,2)*\distanceC+(-\distanceC+\distanceD)*pow(\x,2))+pow(\angleC,2)*(pow(\angleD,3)*\distanceA-pow(\angleA,3)*\distanceD+(-\distanceA+\distanceD)*pow(\x,3))-pow(\angleA,2)*(pow(\angleD,3)*\distanceC+(-\distanceC+\distanceD)*pow(\x,3))))/((\angleA-\angleB)*(\angleA-\angleC)*(\angleB-\angleC)*(\angleA-\angleD)*(\angleB-\angleD)*(\angleC-\angleD)));}}
\newcommand{\DrawArcAngle}[6][]{% just for emergencies
\pgfmathanglebetweenpoints{\pgfpointanchor{#3}{center}}{\pgfpointanchor{#2}{center}}
\xdef\angleA{\pgfmathresult}
\pgfmathanglebetweenpoints{\pgfpointanchor{#3}{center}}{\pgfpointanchor{#4}{center}}
\xdef\angleB{\pgfmathresult}
\draw[#1] ($(#3)+(\angleA:#5)$) arc [start angle=\angleA,end angle=\angleB,radius=#5]
#6;
}
\newcommand{\DrawPotato}[5][]{
\coordinate (PotatoCenter) at (barycentric cs:#2=1,#3=1,#4=1,#5=1);
\pgfmathanglebetweenpoints{\pgfpointanchor{PotatoCenter}{center}}{\pgfpointanchor{#2}{center}}
\xdef\angleA{\pgfmathresult}
\pgfmathanglebetweenpoints{\pgfpointanchor{PotatoCenter}{center}}{\pgfpointanchor{#3}{center}}
\xdef\angleB{\pgfmathresult}
\pgfmathanglebetweenpoints{\pgfpointanchor{PotatoCenter}{center}}{\pgfpointanchor{#4}{center}}
\xdef\angleC{\pgfmathresult}
\pgfmathanglebetweenpoints{\pgfpointanchor{PotatoCenter}{center}}{\pgfpointanchor{#5}{center}}
\xdef\angleD{\pgfmathresult}

\Distance{(PotatoCenter)}{(#2)}{\distanceA}
\Distance{(PotatoCenter)}{(#3)}{\distanceB}
\Distance{(PotatoCenter)}{(#4)}{\distanceC}
\Distance{(PotatoCenter)}{(#5)}{\distanceD}
\xdef\coordList{(\angleA,\distanceA) (\angleB,\distanceB) (\angleC,\distanceC) (\angleD,\distanceD)}%
\typeout{\coordList}
\xdef\sortedList{\QSpairs{\coordList}}%
\GetWords{\sortedList}
\xdef\NewList{\worda,\wordb,\wordc,\wordd}%
\xdef\NewList{\expandafter\First\worda/\expandafter\Second\worda, 
\expandafter\First\wordb/\expandafter\Second\wordb,
\expandafter\First\wordc/\expandafter\Second\wordc,
\expandafter\First\wordd/\expandafter\Second\wordd}% this list is not used
\xdef\angleA{\expandafter\First\worda}%
\xdef\distanceA{\expandafter\Second\worda}%
\xdef\angleB{\expandafter\First\wordb}%
\xdef\distanceB{\expandafter\Second\wordb}%
\xdef\angleC{\expandafter\First\wordc}%
\xdef\distanceC{\expandafter\Second\wordc}%
\xdef\angleD{\expandafter\First\wordd}%
\xdef\distanceD{\expandafter\Second\wordd}%
\begin{scope}[shift=(PotatoCenter)]
\draw[#1,smooth,samples=50] plot[variable=\x,domain=\angleA:\angleB] %
(\x:{interpolator(\x,\angleA,\angleB,\distanceA,\distanceB)})
-- 
plot[variable=\x,domain=\angleB:\angleC] %
(\x:{interpolator(\x,\angleB,\angleC,\distanceB,\distanceC)})
--
plot[variable=\x,domain=\angleC:\angleD] %
(\x:{interpolator(\x,\angleC,\angleD,\distanceC,\distanceD)})
--
plot[variable=\x,domain=\angleD:{\angleA+360}] %
(\x:{interpolator(\x,\angleD,{\angleA+360},\distanceD,\distanceA)});
\end{scope}
}
\begin{document}
\begin{frame}
\frametitle{What does the current code do?}
\begin{overlayarea}{\textwidth}{\textheight}
\begin{tikzpicture}
\path[use as bounding box] (-5,-3) rectangle (7,5);
\node[text width=8cm] (text) at (0,3){%
\only<1>{input: four points, here A, B, C \& D}
\only<2>{step one: compute the barycenter of those points}
\only<3>{imagine now a circle around the barycenter with radius equal to the 
average distance}
\only<4>{the code simply adds some sine functions to the radius such that the
contour runs through the points and the distance is extremal at those points}
\only<5>{however, the code is extremely clumsy and slow, and I have the feeling
that I'm re--inventing the wheel when dealing with lists etc.}
};
\coordinate (A) at (-1,1);
\coordinate (B) at (2,0.5);
\coordinate (C) at (4,-1);
\coordinate (D) at (1,-1);
\coordinate (Center) at (barycentric cs:A=1,B=1,C=1,D=1);
\pgfmathsetmacro{\TotalDistance}{0}
\xdef\DistanceList{}
\foreach \p in {A,B,C,D}
{\draw[fill=black] (\p) circle (1pt) node[below]{\p};
}
\Distance{(Center)}{(A)}{\DistanceA}
\Distance{(Center)}{(B)}{\DistanceB}
\Distance{(Center)}{(C)}{\DistanceC}
\Distance{(Center)}{(D)}{\DistanceD}
\pgfmathsetmacro{\AverageDistance}{(\DistanceA+\DistanceB+\DistanceC+\DistanceD)/4}
\pause
\draw[fill=black] (Center) circle (1pt) node[below]{Center};
\pause
\draw[-,dashed] (Center) circle (\AverageDistance);
\pause
\only<4->{
\DrawPotato[blue]{A}{B}{C}{D}
}
\end{tikzpicture}


\end{overlayarea}
\end{frame}
\end{document}

insira a descrição da imagem aqui

Responder1

Com as bibliotecas mathe calc, é possível fazer isso de forma um pouco mais simples. Você pode inverter quaisquer duas coordenadas para ver se isso também funciona para coordenadas que ainda não estão ordenadas (eu apenas testei a inversão A, Bmas deve funcionar para todas elas).

Eu não mudei nada \begin{document}e \end{document}ainda \Distanceestá lá, mas não o uso na minha definição de \DrawPotatoentão você realmente não precisa dele.

insira a descrição da imagem aqui

\documentclass{beamer}
\usepackage{tikz}
\usetikzlibrary{calc,math}

% I don't use this in my \DrawPotato
\makeatletter % from https://tex.stackexchange.com/a/412901/121799
\newcommand{\Distance}[3]{% % from https://tex.stackexchange.com/q/56353/121799
    \tikz@scan@one@point\pgfutil@firstofone($#1-#2$)\relax  
    \pgfmathsetmacro{#3}{veclen(\the\pgf@x,\the\pgf@y)/28.45274}
}
\makeatother

\tikzset{
    declare function={
        interpolator(\x,\xmin,\xmax,\rmin,\rmax)=
            1/28.4527*((\rmin+\rmax)/2+((\rmin-\rmax)/2)*cos((\x-\xmin)*(180/(\xmax-\xmin))));
    }
}

\newcommand\DrawPotato[5][]{%
    \tikzmath{
        coordinate \p,\cent;
        \p0 = {(#2)};
        \p1 = {(#3)};
        \p2 = {(#4)};
        \p3 = {(#5)};
        \cent = ({(\px0+\px1+\px2+\px3)/4},{(\py0+\py1+\py2+\py3)/4}); % Average point
        real \angl,\dist;
        int \i,\j;
        for \i in {0,1,2,3}{
            \angl{\i} = atan2(\py{\i}-\centy,\px{\i}-\centx);
            \dist{\i} = veclen(\py{\i}-\centy,\px{\i}-\centx);
        };
        for \i in {0,1,2,3}{
            for \j in {0,1,2,3}{
                if min(\angl{0},\angl{1},\angl{2},\angl{3}) == \angl{\j} then {
                    \sortang{\i} = \angl{\j};
                    \sortind{\i} = \j;
                };
            };
            \angl{\sortind{\i}} = 500; % Arbitrary large value
            \sortdis{\i} = \dist{\sortind{\i}};
        };
    }
    \draw[#1,smooth,samples=50,shift={(\cent)}] 
        plot[variable=\x,domain=\sortang{0}:\sortang{1}] %
            (\x:{interpolator(\x,{\sortang{0}},{\sortang{1}},{\sortdis{0}},{\sortdis{1}})}) --
        plot[variable=\x,domain=\sortang{1}:\sortang{2}] %
            (\x:{interpolator(\x,{\sortang{1}},{\sortang{2}},{\sortdis{1}},{\sortdis{2}})}) --
        plot[variable=\x,domain=\sortang{2}:\sortang{3}] %
            (\x:{interpolator(\x,{\sortang{2}},{\sortang{3}},{\sortdis{2}},{\sortdis{3}})}) --
        plot[variable=\x,domain=\sortang{3}:\sortang{0}+360] %
            (\x:{interpolator(\x,{\sortang{3}},{\sortang{0}+360},{\sortdis{3}},{\sortdis{0}})}) --
        cycle ;
}

\begin{document}
\begin{frame}
\frametitle{What does the current code do?}
\begin{overlayarea}{\textwidth}{\textheight}
\begin{tikzpicture}
\path[use as bounding box] (-5,-3) rectangle (7,5);
\node[text width=8cm] (text) at (0,3){%
\only<1>{input: four points, here A, B, C \& D}
\only<2>{step one: compute the barycenter of those points}
\only<3>{imagine now a circle around the barycenter with radius equal to the 
average distance}
\only<4>{the code simply adds some sine functions to the radius such that the
contour runs through the points and the distance is extremal at those points}
\only<5>{however, the code is extremely clumsy and slow, and I have the feeling
that I'm re--inventing the wheel when dealing with lists etc.}
};
\coordinate (A) at (-1,1);
\coordinate (B) at (2,0.5);
\coordinate (C) at (4,-1);
\coordinate (D) at (1,-1);
\coordinate (Center) at (barycentric cs:A=1,B=1,C=1,D=1);
\pgfmathsetmacro{\TotalDistance}{0}
\xdef\DistanceList{}
\foreach \p in {A,B,C,D}
{\draw[fill=black] (\p) circle (1pt) node[below]{\p};
}
\Distance{(Center)}{(A)}{\DistanceA}
\Distance{(Center)}{(B)}{\DistanceB}
\Distance{(Center)}{(C)}{\DistanceC}
\Distance{(Center)}{(D)}{\DistanceD}
\pgfmathsetmacro{\AverageDistance}{(\DistanceA+\DistanceB+\DistanceC+\DistanceD)/4}
\pause
\draw[fill=black] (Center) circle (1pt) node[below]{Center};
\pause
\draw[-,dashed] (Center) circle (\AverageDistance);
\pause
\only<4->{
\DrawPotato[blue]{A}{B}{C}{D}
}
\end{tikzpicture}


\end{overlayarea}
\end{frame}
\end{document}

informação relacionada