fração em látex com itens longos

fração em látex com itens longos
$$\frac{\partial \mathcal{L}}{\partial \eta_1}= -\sum_{i=1}^{n}\frac{\frac{\eta_1}{c}-\cos(y_i-\beta_i X_i)}{c-\eta_1\cos(y_i-\beta_i X_i)-\eta_2\sin(y_i-\beta_i X_i)} $$

Preciso de um grande denominador e numerador.

Responder1

Você pode usar o comando \dfrac ( displaystylefração) de amsmathou \mfrac( medium-sizedfração, cerca de 80% do estilo de exibição) (de nccmath):

\documentclass{article}
\usepackage[utf8]{inputenc}}
\usepackage{mathtools, nccmath}


\newcommand*{\e}{\mathrm{e}}

\begin{document}

\[ \frac{\partial \mathcal{L}}{\partial \eta_1}= -\sum_{i=1}^{n}\frac{\dfrac{\eta_1}{c}-\cos(y_i-\beta_i X_i)}{c-\eta_1\cos(y_i-\beta_i X_i)-\eta_2\sin(y_i-\beta_i X_i)} \]%

 \[ \frac{\partial \mathcal{L}}{\partial \eta_1}= -\sum_{i=1}^{n}\frac{\mfrac{\eta_1}{c}-\cos(y_i-\beta_i X_i)}{c-\eta_1\cos(y_i-\beta_i X_i)-\eta_2\sin(y_i-\beta_i X_i)} \]%

  \[ \frac{\partial \mathcal{L}}{\partial \eta_1}= -\sum_{i=1}^{n}\frac{\frac{\eta_1}{c}-\cos(y_i-\beta_i X_i)}{c-\eta_1\cos(y_i-\beta_i X_i)-\eta_2\sin(y_i-\beta_i X_i)} \]%

\end{document} 

insira a descrição da imagem aqui

informação relacionada