
Eu gostaria de "ligar visualmente" as equações noalign
Como uma imagem vale muitas palavras, aqui está um exemplo que fiz no MS Paint para mostrar o que quero dizer:
Como alguém poderia conseguir isso? Um MWE para fins de teste:
\documentclass{article}
\usepackage{amsmath}
\allowdisplaybreaks
\begin{document}
First, let us solve the following recursion formula:
$$ F_{n + 1} = \alpha F_{n} + \beta$$
\begin{align*}
&\quad F_{n + 1} = \alpha F_{n} + \beta \\
&\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
&\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
&\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
&\equiv \phi(t) (1 - \alpha t) = \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
&\quad \\
&\quad F_{n + 1} = \alpha F_{n} + \beta \\
&\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
&\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
&\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
&\equiv \phi(t) (1 - \alpha t) = \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
&\quad \\
&\quad F_{n + 1} = \alpha F_{n} + \beta \\
&\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
&\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
&\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
&\equiv \phi(t) (1 - \alpha t) = \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
&\quad \\
&\quad F_{n + 1} = \alpha F_{n} + \beta \\
&\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
&\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
&\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
&\equiv \phi(t) (1 - \alpha t) = \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
&\quad \\
&\quad F_{n + 1} = \alpha F_{n} + \beta \\
&\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
&\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
&\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
&\equiv \phi(t) (1 - \alpha t) = \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
&\quad \\
&\quad F_{n + 1} = \alpha F_{n} + \beta \\
&\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
&\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
&\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
&\equiv \phi(t) (1 - \alpha t) = \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t}
\end{align*}
\end{document}
Responder1
Uma solução de acordo com meu comentário:
\documentclass{article}
\usepackage{amsmath}
\allowdisplaybreaks
\usepackage{tikz}
\def\tikzmark#1{\begin{tikzpicture}[remember picture]\coordinate(#1);\end{tikzpicture}}
\begin{document}
$$ F_{n + 1} = \alpha F_{n} + \beta$$
\begin{align*}
&\tikzmark{A}\quad F_{n + 1} = \alpha F_{n} + \beta \\
&\tikzmark{C}\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
&\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
&\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
&\tikzmark{D}\equiv \phi(t) (1 - \alpha t) = \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
&\quad \\
&\quad F_{n + 1} = \alpha F_{n} + \beta \\
&\tikzmark{B}\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
&\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
&\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
&\equiv \phi(t) (1 - \alpha t) = \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
&\quad \\
&\quad F_{n + 1} = \alpha F_{n} + \beta \\
&\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
&\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
&\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
&\equiv \phi(t) (1 - \alpha t) = \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
&\quad \\
&\quad F_{n + 1} = \alpha F_{n} + \beta \\
&\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
&\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
&\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
&\equiv \phi(t) (1 - \alpha t) = \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
&\quad \\
&\quad F_{n + 1} = \alpha F_{n} + \beta \\
&\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
&\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
&\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
&\equiv \phi(t) (1 - \alpha t) = \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t} \\
&\quad \\
&\quad F_{n + 1} = \alpha F_{n} + \beta \\
&\equiv \sum_{n = 0}^{\infty} F_{n + 1} t^{n} = \alpha \sum_{n = 0}^{\infty} F_{n} t^{n} + \beta t^{n} \\
&\equiv t^{-1} \sum_{n = 0}^{\infty} F_{n + 1} t^{n + 1} = \alpha \sum_{n = 0}^{\infty} F_{n}t^n + \beta t^n \\
&\equiv \phi(t) - F_{0} = \alpha t\phi(t) + \frac{\alpha t}{1 - \beta t} \\
&\equiv \phi(t) (1 - \alpha t) = \frac{\alpha t}{1 - \beta t} + F_0\frac{1 - \beta t}{1 - \beta t}
\end{align*}
\begin{tikzpicture}[remember picture,overlay]
\draw[-,red] (A)--([xshift=-0.6cm]A)|-(B);
\draw[-,blue] (C)--([xshift=-0.4cm]C)|-(D);
\end{tikzpicture}
\end{document}
Saída:
Observe que as linhas começam no centro de cada linha (cada linha matemática) e podem precisar ser ajustadas para serem centralizadas com \equiv
o símbolo.
Talvez eu possa automatizar isso mais tarde, se você estiver interessado. (Uma yshift=2mm
opção antes da letra do tikzmark no comando de desenho pode corrigi-lo manualmente)