\begin{equation}
\begin{split}
&\max_{x_{i, j}, \hat{x}_{i,j}, x_i^k} \left\{\pi_{Slave, i, t}(x_{i, j}, \hat{x}_{i,j}, x_i^k, p_k) =\\
&\sum_{j \in \Psi_{\varrho}} W_{j}(\hat{x}_{i, j}(t))\sum_{j \in \Psi_{\varepsilon}} U_{j}(x_{i,j}(t)) - \sum_{k=1}^N p_k(t) x_i^k(t)\right\} \\
&\text{subject to}\\
&0 \leq x_{i, j} (t)\leq \delta_{i,j}(t)\\
&\beta_{i,j} C_n(t) \leq \hat{x}_{i,j}(t) \leq \hat{\delta}_{i,j}(t)\\
&0 \leq x_i^k\leq q_k^i\\
&\sum_{j \in \Psi_{\varepsilon}} x_{i, j} (t) + \sum_{j \in \Psi_{\varrho}}\hat{x}_{i,j}(t) \leq \sum_{k\in N}x_i^k
\end{split}
\end{equation}
Responder1
Assim?
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation}
\begin{split}
&\max_{x_{i, j}, \hat{x}_{i,j}, x_i^k} \left\{\pi_{Slave, i, t}(x_{i, j}, \hat{x}_{i,j}, x_i^k, p_k)\right\} =\\
&\sum_{j \in \Psi_{\varrho}} W_{j}(\hat{x}_{i, j}(t))\sum_{j \in \Psi_{\varepsilon}} U_{j}(x_{i,j}(t)) - \sum_{k=1}^N p_k(t) x_i^k(t) \\
&\text{subject to}\\
&0 \leq x_{i, j} (t)\leq \delta_{i,j}(t)\\
&\beta_{i,j} C_n(t) \leq \hat{x}_{i,j}(t) \leq \hat{\delta}_{i,j}(t)\\
&0 \leq x_i^k\leq q_k^i\\
&\sum_{j \in \Psi_{\varepsilon}} x_{i, j} (t) + \sum_{j \in \Psi_{\varrho}}\hat{x}_{i,j}(t) \leq \sum_{k\in N}x_i^k
\end{split}
\end{equation}
\end{document}