Como alinhar um conjunto de múltiplas equações em um conjunto de múltiplas equações alinhadas?

Como alinhar um conjunto de múltiplas equações em um conjunto de múltiplas equações alinhadas?

Com um conjunto de múltiplas equações alinhadas estão ficando desalinhadas da seguinte forma:

\begin{equation*}
DGE
\left \{
\begin{aligned}
& FEGE & & &
\left \{
\begin{aligned}
& & CGE & &
\left \{
\begin{aligned}
& & & EP &
\left \{
\begin{aligned}
&&&& x_{ij, \> t} = \frac{Y_{i, \> t} \, E_{j, \> t}}{Y_t} \, \left ( \frac{t_{ij, \> t}}{\prod_{i, \> t} \, P_{j, \> t}} \right )^{1 - \sigma}
\end{aligned}
\right. \\
&&&& \Pi^{1 - \sigma}_{i, \> t} = \sum_j \left ( \frac{t_{ij, \> t}}{P_{j, \> t}} \right )^{1 - \sigma} \, \frac{E_{j, \> t}}{Y_t} \\
&&&& P^{1 - \sigma}_{j, \> t} = \sum_i \left ( \frac{t_{ij, \> t}}{\Pi_{i, \> t}} \right )^{1 - \sigma} \, \frac{Y_{i, \> t}}{Y_t} 
\end{aligned}
\right. \\
&&&&  p_{i, \> t} = \left ( \frac{Y_{i, \> t}}{Y_t} \right )^{\frac{1}{1 - \sigma}} \, \frac{1}{\alpha_i \, \Pi_{i, \> t}} \\
&&&& Y_{i, \> t} = p_{i, \> t} \, A_{i, \> t} \, L^{1 - \eta}_{i, \> t} \, K^{\eta}_{i, \> t} \\
&&&& E_{i, \> t} = \varphi_{i} \, Y_{i, \> t}
\end{aligned}
\right. \\
&&&& K_{i, \> t \; + \; 1} = \left [ \gamma \, \delta \, \varphi_{i, \> t} \, \frac{\eta \, p_{i, \> t} \, A_{i, \> t} \, L^{1 - \eta}_{i, \> t} \, K^{\eta - 1}_{i, \> t}}{(1 - \gamma \; + \; \delta \gamma) \, P_{i, \> t}} \right]^{\delta} \, K_{i, \> t}
\end{aligned}
\right.
\end{equation*}

insira a descrição da imagem aqui

No entanto, gostaria de obter um alinhamento igual ao usar o eqnarray, da seguinte forma:

\begin{eqnarray*}
x_{ij, \> t} & = & \frac{Y_{i, \> t} \, E_{j, \> t}}{Y_t} \, \left ( \frac{t_{ij, \> t}}{\prod_{i, \> t} \, P_{j, \> t}} \right )^{1 - \sigma} \\
\Pi^{1 - \sigma}_{i, \> t} & = & \sum_j \left ( \frac{t_{ij, \> t}}{P_{j, \> t}} \right )^{1 - \sigma} \, \frac{E_{j, \> t}}{Y_t} \\
P^{1 - \sigma}_{j, \> t} & = & \sum_i \left ( \frac{t_{ij, \> t}}{\Pi_{i, \> t}} \right )^{1 - \sigma} \, \frac{Y_{i, \> t}}{Y_t} \\
p_{i, \> t} & = & \left ( \frac{Y_{i, \> t}}{Y_t} \right )^{\frac{1}{1 - \sigma}} \, \frac{1}{\alpha_i \, \Pi_{i, \> t}} \\
Y_{i, \> t} & = & p_{i, \> t} \, A_{i, \> t} \, L^{1 - \eta}_{i, \> t} \, K^{\eta}_{i, \> t} \\
E_{i, \> t} & = & \varphi_{i} \, Y_{i, \> t} \\
K_{i, \> t \; + \; 1} & = & \left [ \gamma \, \delta \, \varphi_{i, \> t} \, \frac{\eta \, p_{i, \> t} \, A_{i, \> t} \, L^{1 - \eta}_{i, \> t} \, K^{\eta - 1}_{i, \> t}}{(1 - \gamma \; + \; \delta \gamma) \, P_{i, \> t}} \right]^{\delta} \, K_{i, \> t}
\end{eqnarray*}

insira a descrição da imagem aqui

Responder1

Aqui está uma maneira, mais ou menos um hack com bigdelim, an arraye mathtools:

\documentclass[a4paper,12pt]{article}
\usepackage{array}
\usepackage{bigdelim}
\usepackage{mathtools} 

\begin{document}

\[ \begin{array}{r@{}r @{} >{\displaystyle{}}l@{}}
\ldelim\{{13.7}{*}[$ DGE $ ]\ldelim\{{10.8}{*}[\enspace$ FEGE $ ]\ldelim\{{6.5}{*}[\enspace$ CGE $ ] \ldelim\{{1.6}{*}[\enspace$ EP $ ] & x_{ij, \> t} & = \frac{Y_{i, \> t} \, E_{j, \> t}}{Y_t} \, \left ( \frac{t_{ij, \> t}}{\prod_{i, \> t} \, P_{j, \> t}} \right )^{1 - \sigma} \\
 & \Pi^{1 - \sigma}_{i, \> t} & = \sum_j \left ( \frac{t_{ij, \> t}}{P_{j, \> t}} \right )^{1 - \sigma} \, \frac{E_{j, \> t}}{Y_t} \\
 & P^{1 - \sigma}_{j, \> t} & = \sum_i \left ( \frac{t_{ij, \> t}}{\Pi_{i, \> t}} \right )^{1 - \sigma} \, \frac{Y_{i, \> t}}{Y_t} \\
 & p_{i, \> t} & = \left ( \frac{Y_{i, \> t}}{Y_t} \right )^{\frac{1}{1 - \sigma}} \, \frac{1}{\alpha_i \, \Pi_{i, \> t}} \\
  & Y_{i, \> t} & = p_{i, \> t} \, A_{i, \> t} \, L^{1 - \eta}_{i, \> t} \, K^{\eta}_{i, \> t} \\
   & E_{i, \> t} & = \varphi_{i} \, Y_{i, \> t} \\
   &\mathllap{ K_{i, \> t \; + \; 1}} & = \left [ \gamma \, \delta \, \varphi_{i, \> t} \, \frac{\eta \, p_{i, \> t} \, A_{i, \> t} \, L^{1 - \eta}_{i, \> t} \, K^{\eta - 1}_{i, \> t}}{(1 - \gamma \; + \; \delta \gamma) \, P_{i, \> t}} \right]^{\delta} \, K_{i, \> t}
\end{array} \]

\end{document} 

insira a descrição da imagem aqui

Responder2

Com o uso do nicematrixpacote:

\documentclass{article}
\usepackage{nicematrix}
\usetikzlibrary{decorations.pathreplacing,
                calligraphy}
\tikzset{
B/.style = {decorate,
            decoration={calligraphic brace, amplitude=3pt,
            raise=1pt, mirror},% for mirroring of brace
            thick},
        }

\begin{document}
    \[\setlength\arraycolsep{1pt}
      \renewcommand\arraystretch{2}  
      \def\X{\hphantom{XX}}
      \def\XX{\hphantom{XXXX}}
\begin{NiceArray}{C
                  @{\hspace{4em}}C
                  @{\hspace{3em}}C
                  @{\hspace{2em}}C
                  RCL}%
    [code-after={
        \tikz\draw[B] (1-4.west |- 1-7.north) -- node[left=1mm] {EP}   (1-4.west |- 1-7.south);
        \tikz\draw[B] (1-3.west |- 1-7.north) -- node[left=1mm] {CGE}  (3-3.west |- 2-7.south);
        \tikz\draw[B] (1-2.west |- 1-7.north) -- node[left=1mm] {FEGE} (6-2.west |- 6-7.south);
        \tikz\draw[B] (1-1.west |- 1-7.north) -- node[left=1mm] {DGE}  (7-1.west |- 7-7.south);
                }
    ]
&&&&
    x_{ij,t} & = & \frac{Y_{i,t} E_{j,t}}{Y_t} \Bigl(\frac{t_{ij,t}}
                                                          {\prod_{i,t} P_{j,t}} \Bigr)^{1 - \sigma} \\
&&&&
    \Pi^{1-\sigma}_{i,t} & = & \sum_j \Bigl(\frac{t_{ij,t}}
                                                 {P_{j,t}} \Bigr)^{1-\sigma} \frac{E_{j,t}}{Y_t} \\
&&&&
    P^{1-\sigma}_{j,t} & = & \sum_i \Bigl(\frac{t_{ij,t}}
                                               {\Pi_{i,t}} \bigr)^{1-\sigma} \frac{Y_{i,t}}{Y_t} \\
&&&&
    p_{i,t} & = & \Bigl(\frac{Y_{i,t}}{Y_t} \Bigr)^{\frac{1}
                                                          {1 - \sigma}} \frac{1}
                                                                             {\alpha_i \Pi_{i,t}} \\
&&&&
    Y_{i,t} & = & p_{i,t} A_{i,t} L^{1 - \eta}_{i,t} K^{\eta}_{i,t} \\
&&&&
    E_{i,t} & = & \varphi_{i} Y_{i,t} \\
&&&&
    K_{i,t+1} & = & \Bigl[\gamma\delta\varphi_{i,t}
        \frac{\eta p_{i,t} A_{i, t} L^{1-\eta}_{i,t} K^{\eta-1}_{i,t}}
             {(1 - \gamma + \delta\gamma) P_{i,t}} \Bigr]^{\delta} K_{i,t}
\end{NiceArray}
    \]
\end{document}

Depois de duas compilações o resultado é:

insira a descrição da imagem aqui

informação relacionada