Alguém pode me ajudar a desenhar isso?

Alguém pode me ajudar a desenhar isso?

**insira a descrição da imagem aqui**

Sou novo no tikz e estou tendo problemas para desenhar isso. Tentei várias soluções da internet mas nada funciona por causa do pequeno intervalo tirado da curva (mas não representado aqui). Alguém pode me ajudar?

Responder1

Você pode desenhar gráficos paramétricos. Neste caso achei mais fácil aplicar todos os poderes a um, digamos x, a coordenada,

\draw[orange,ultra thick] plot[domain=-4:4,smooth] ({sign(\x)*pow(abs(\x),5/3)/2.5},\x);

porque é mais fácil determinar o domínio. $x_2^5=x_1^3$fica em uma coordenada muito especial. ;-)

\documentclass[tikz,border=3mm]{standalone}
\usepackage{dsfont}
\begin{document}
\begin{tikzpicture}[>=stealth]
 \path[left color=white,right color=green] plot[domain=-4:4,smooth]
 ({sign(\x)*pow(abs(\x),5/3)/2.5},\x) -| cycle;
 \draw (-4,-4) rectangle (4,4); 
 \draw[orange,ultra thick] plot[domain=-4:4,smooth]
     ({sign(\x)*pow(abs(\x),5/3)/2.5},\x);
 \draw[->] (-4,0) -- (4,0) node[right]{$\mathds{R}$};    
 \draw[->] (0,-4) -- (0,4) node[above]{$\mathds{R}$};    
 \draw[very thick,blue,->] (0,0) 
  node[circle,draw,fill,black,inner sep=2pt,label={[black,inner sep=1pt]above left:{$\bar x=(0,0)$}}]{} 
    -- (2,0) node[above]{$\mathcal{N}_S^P(x)=\emptyset$}
            node[below,black]{$\mathcal{N}_S^C(x)$};
 \path (2.2,2.020) % Groundhog day!
    node{$x_2^5=x_1^3$} (-3,2.5) node{$\mathcal{S}$};   
\end{tikzpicture}
\end{document}

insira a descrição da imagem aqui

TERMO ADITIVO: Como isso está marcado pgfplots, aqui está uma versão usando pgfplots. Ele também usa clipcantos arredondados como emResposta de Black Mild(+1).

\documentclass[tikz,border=3mm]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.16}
\usepackage{dsfont}
\begin{document}
\begin{tikzpicture}[>=stealth]
 \begin{axis}[hide axis,width=9cm,height=9cm,domain=-1:1,clip mode=individual] 
  \begin{scope}
   \draw[rounded corners,clip] (-1,-1) rectangle  (1,1);
   \path[left color=white,right color=green] plot[domain=-1:1,smooth]
   ({pow(\x,5)},{pow(\x,3)}) -| cycle;
   \addplot[orange,ultra thick,smooth]  (x^5,x^3) ;
  \end{scope}
  \draw[very thick,blue,->] (0,0) 
   node[circle,draw,fill,black,inner sep=2pt,label={[black,inner sep=1pt]above left:{$\bar x=(0,0)$}}]{} 
     -- (0.5,0) node[above]{$\mathcal{N}_\mathcal{S}^P(x)=\emptyset$}
             node[below,black]{$\mathcal{N}_\mathcal{S}^C(x)$};
  \path (0.55,0.5) node{$x_2^5=x_1^3$} (-0.75,0.6) node{$\mathcal{S}$};
  \draw[->] (-1,0) -- (1,0) node[right]{$\mathds{R}$}; 
  \draw[->] (0,-1) -- (0,1) node[above]{$\mathds{R}$};  
 \end{axis}
\end{tikzpicture}
\end{document}

insira a descrição da imagem aqui

Responder2

Eu uso a forma paramétrica da curva x1=t^5,x2=t^3, recorto dentro do quadrado do canto arredondado [-1,1]^2e dimensiono a imagem inteira.

insira a descrição da imagem aqui

\documentclass[tikz,border=5mm]{standalone}
\usepackage{amssymb}
\begin{document}
\begin{tikzpicture}[scale=4]

\begin{scope}\clip[rounded corners] (-1,-1) rectangle (1,1);
\def\gr{plot[variable=\t,domain=-1:1] (\t^5,\t^3)}
\fill[left color=white,right color=green] \gr|-(-1,1)|-cycle;
\draw[orange,smooth,very thick] \gr;
\draw[rounded corners](-1,-1) rectangle (1,1);
\draw[-stealth,blue,very thick] (0,0)--(.5,0) 
node[above]{$\mathcal{N}^P_{\mathcal{S}} (\bar{x})=\emptyset$}
node[below,black]{$\mathcal{N}^C_{\mathcal{S}} (\bar{x})$};
\fill (0,0) circle(.8pt) node[above left]{$\bar{x}=(0,0)$};
\end{scope}

\draw[->] (-1,0)--(1,0) node[right]{$\mathbb{R}$}; 
\draw[->] (0,-1)--(0,1) node[above]{$\mathbb{R}$};
\path 
(.7,.5) node{$x_2^5=x_1^3$}
(-.7,.5) node{$\mathcal{S}$};
\end{tikzpicture}
\end{document}

Responder3

Para se divertir, uma pstrickssolução:

\documentclass[svgnames, x11names,border=6pt]{standalone}%
\usepackage{amssymb} 
\usepackage{pst-grad, pst-plot, auto-pst-pdf}%

\begin{document}

 \psset{xunit=1.3, yunit=2, arrowinset=0.12, algebraic, plotstyle=curve, plotpoints=200, labelFontSize=\scriptstyle}%
\begin{pspicture}(-4.66, -2.53)(5,2.53)%
\psset{linecolor=IndianRed}%
\pscustom[linestyle=none, fillstyle=gradient, gradangle=240,gradbegin=MistyRose, gradend=White, gradmidpoint= 1]{\psline(-4.66,2.53)(-4.66,-2.53) \parametricplot{-1.36}{1.36}{t^5|t^3}\psline(4.66,2.53)(-4.66,2.53)}
\psaxes[linecolor=LightSteelBlue3, ticks=none, labels=none]{->}(0,0)(-4.66,-2.53)(5,2.53)[$x_1$, -120][$x_2$, -135]
\parametricplot[plotpoints=400, linewidth=1.5pt]{-1.36}{1.36}{t^5|t^3}
\psline[linewidth = 1.5pt, linecolor=Navy]{*->}(0,0)(1.5,0)
\uput[u](1.5,0){\color{RoyalBlue}$\mathcal{N}^{P}_{\mathcal{S}}(\bar {x}) = \varnothing$}
\uput[d](1.5,0){$\mathcal{N}^{C}_{\mathcal{S}}(\bar {x})$}
\uput[ul](0,0){$\bar{x}=(0,0)$}
\rput(-3.2,1.6){$\mathcal{S}$}
\rput{35}(2.6,1.6){$x_1^5 = x_2^3$}
\end{pspicture}

\end{document} 

insira a descrição da imagem aqui

informação relacionada