Quero numerar a região das linhas que dividem uma linha plana nesta imagem.
Com uma linha temos duas regiões, com duas linhas temos quatro regiões. tentei
\documentclass[tikz,12pt]{standalone}
\begin{document}
\begin{tikzpicture}
\path
(0,0) coordinate (O)
(-2,-2) coordinate (A)
(2,2) coordinate (B)
(2,-2) coordinate (C)
(-2,2) coordinate (D);
\node at (barycentric cs:A=1,C=1,B=1) {$1$};
\node at (barycentric cs:A=1,D=1,B=1) {$2$};
\draw (A) -- (B);
\end{tikzpicture}
\begin{tikzpicture}
\path
(0,0) coordinate (O)
(-2,-2) coordinate (A)
(2,2) coordinate (B)
(-4,-2) coordinate (C)
(4,2) coordinate (D);
\draw (A) -- (B) (C) -- (D);
\node at (barycentric cs:A=1,O=1,C=1) {$1$};
\node at (barycentric cs:B=1,O=1,C=1) {$2$};
\node at (barycentric cs:B=1,O=1,D=1) {$3$};
\node at (barycentric cs:A=1,O=1,D=1) {$4$};
\end{tikzpicture}
\end{document}
Eu sei que o número máximo $ L_n $ é $ \dfrac{n^2+n+2}{2} $. Como posso desenhar a imagem acima automaticamente? Como posso adicionar números a essas imagens automaticamente?
Responder1
Isso está longe de ser uma resposta completa. A questão parece ser como, dado o número n
de linhas, podemos organizá-las de forma que o número de regiões atinja o seu número máximo (n^2+n+2)/2
,. Acho que as seguintes condições são necessárias:
- Não existem duas linhas diferentes paralelas.
- Não mais do que duas linhas se cruzam em um determinado ponto de interseção.
Usando essas diretrizes, pode-se construir uma imagem que crie tal arranjo.
\documentclass[tikz,border=3mm]{standalone}
\begin{document}
\begin{tikzpicture}[pics/divi/.style={code={
\foreach \X [evaluate=\X as \Y using {360*\X/(#1+1-isodd(#1))}]
in {1,...,#1}
\draw[scale=1/#1] ({90+\Y}:#1/4)
++ ({180+\Y}:1+1.5*#1) -- ++ ({\Y}:2+3*#1);
}}]
\matrix {\pic {divi=1}; & \pic {divi=2}; \\
\pic {divi=3}; & \pic {divi=4}; \\
\pic {divi=5}; & \pic {divi=6}; \\
};
\end{tikzpicture}
\end{document}
Eu nem tentei colocar os números.
Responder2
Isso fornece uma macro para calcular o incentivo de um triângulo. A parte difícil foi evitar estouros de ponto flutuante.
\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{calc}
\newcommand{\incenter}[4]% #1-#3 = coordinate names for vertices, #4 = name of incenter
{\pgfscope
\pgfpathmoveto{\pgfpointanchor{#1}{center}}%
\pgfgetlastxy{\xa}{\ya}%
\pgfpathmoveto{\pgfpointanchor{#2}{center}}%
\pgfgetlastxy{\xb}{\yb}%
\pgfpathmoveto{\pgfpointanchor{#3}{center}}%
\pgfgetlastxy{\xc}{\yc}%
\pgfmathsetmacro{\a}{veclen(\xc-\xb,\yc-\yb)}%
\pgfmathsetmacro{\b}{veclen(\xc-\xa,\yc-\ya)}%
\pgfmathsetmacro{\c}{veclen(\xb-\xa,\yb-\ya)}%
\pgfmathsetmacro{\d}{\a+\b+\c}%
\pgfmathsetmacro{\a}{\a/\d}%
\pgfmathsetmacro{\b}{\b/\d}%
\pgfmathsetmacro{\c}{\c/\d}%
\pgfmathsetlengthmacro{\xo}{\a*\xa + \b*\xb + \c*\xc}%
\pgfmathsetlengthmacro{\yo}{\a*\ya + \b*\yb + \c*\yc}%
\pgfcoordinate{#4}{\pgfpoint{\xo}{\yo}}
\endpgfscope}
\begin{document}
\begin{tikzpicture}
\path
(0,0) coordinate (O)
(-2,-2) coordinate (A)
(2,2) coordinate (B)
(2,-2) coordinate (C)
(-2,2) coordinate (D);
\draw (A) -- (B);
\incenter{A}{C}{B}{O1}%
\node at (O1) {1};
\incenter{A}{D}{B}{O2}%
\node at (O2) {2};
\end{tikzpicture}
\begin{tikzpicture}
\path
(0,0) coordinate (O)
(-2,-2) coordinate (A)
(2,2) coordinate (B)
(-4,-2) coordinate (C)
(4,2) coordinate (D);
\draw (A) -- (B) (C) -- (D);
\incenter{A}{O}{C}{O1}%
\node at (O1) {1};
\incenter{B}{O}{C}{O2}%
\node at (O2) {2};
\incenter{B}{O}{D}{O3}%
\node at (O3) {3};
\incenter{A}{O}{D}{O4}%
\node at (O4) {4};
\end{tikzpicture}
\end{document}
Responder3
Desenhar esses diagramas é fácil. O código abaixo define uma macro, \DividedPlanes
, para que
\DividedPlanes{5}
\DividedPlanes{6}
produz estas configurações para 5 e 6 pontos, respectivamente:
As linhas \DividedPlanes{<n>}
são desenhadas primeiro usando um \foreach
loop para colocar n
coordenadas em torno de um círculo de raio 2
nos pontos 2k\pi/n
, para k=1,2,...,n
. Depois disso, as linhas são desenhadas fazendo um loop sobre todos os pares de números (equivalentemente, pontos), em {1,2,...,n}
. Pensando mais do que tenho tempo no momento (é um dia de trabalho), deveria ser possível rotular as regiões (o comportamento é um pouco diferente quando n
é ímpar e quando é par). Posso voltar a isso se a população felina local não me vencer.
Aqui está o código:
\documentclass{article}
\usepackage{tikz}
% allow an optional argument so that we can pass some optional
% style commands to the tikzpicture environment
% usage: \DividedPlanes[style]{n}
\newcommand\DividedPlanes[2][]{
\begin{tikzpicture}[#1]
% reserve some real estate for the image
\draw[white](-3,-3) rectangle (3,3);
\foreach \pt in {1,...,#2} {
% name coordinates (1), (2), ..., (#2)
\coordinate (\pt) at (\pt*360/#2:2);
}
\foreach \apt in {1,...,#2} {
\foreach \bpt in {1,...,#2} {
\ifnum\apt=\bpt\else
% draw a line when a and b are distinct
\draw[shorten >=-20,shorten <=-20](\apt)--(\bpt);
\fi
}
}
\end{tikzpicture}
}
\begin{document}
\DividedPlanes{2}
\DividedPlanes{3}
\DividedPlanes{4}
\DividedPlanes{5}
\DividedPlanes{6}
\end{document}