
estou tendo problemas para compilar meu código LaTeX. Recentemente estou aprendendo LaTeX para começar a escrever meu dever de casa. Os erros são: argumento descontrolado?, Faltando $ inserido.
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage[]{amsthm}
\usepackage[]{amssymb}
\usepackage{flexisym}
\usepackage{amsmath}
\title{Desarrollo}
\author{Example}
\date\today
\begin{document}
\maketitle
\subsection*{Desarrollo}
\textit{
\textbf{iii.} Encuentre los intervalos de concavidad y los puntos de inflexión.
}
\text{Calculemos $f\textprime\textprime(x)$}
\begin{align*}
&\text{Teniamos anteriormente que la derivada era}\\
f\textprime(x)&=\tan x \cdot \sec^{2}x\\\\
f\textprime\textprime(x)&=\sec^{2}(x) + [(1)\cdot(\sec ^{2}x)\cdot + x\cdot(\sec ^2x)\textprime]\\
&=\sec^{2}x+(\sec^{2}x+2\sec ^{2}x \cdot \tan x)\\
&=\sec^{2}x+\sec^{2}x+2\sec ^{2}x \cdot \tan x\\
&=2\sec^{2}x+2\cdot \sec^{2}x\cdot \tan x\\\\
&\text{Podemos factorizar por $\sec^{2}x$}\\
f \textprime \textprime(x)&=\sec ^{2}x (2+2 \tan x)\\\\
&\text{Entonces calculamos sus puntos criticos}\\
\end{align*}
\clearpage
\end{document}
Bônus: se alguém tiver um bom recurso para começar a escrever meu dever de casa em LaTeX, eu o receberei com prazer.
Responder1
Eu me livraria das linhas extras em branco no align*
ambiente e reorganizaria partes do material para que houvesse mais foco visual na parte nova, ou seja, na derivação da segunda derivada. Por exemplo, não vejo necessidade de usar uma equação exibida para reafirmar a fórmula da primeira derivada. Use \intertext
para escrever apartes e comentários explicativos. Eu também substituiria todas as instâncias \textprime
por '
. (Suponho que você carregou o flexisym
pacote para acessar a \textprime
macro, certo?)
\documentclass{article}
%\usepackage[utf8]{inputenc} % that's the default nowadays
\usepackage[T1]{fontenc}
\usepackage[spanish]{babel}
\usepackage{amsthm,amssymb,amsmath}
%\usepackage{flexisym} % no longer needed
\begin{document}
\subsection*{Desarrollo}
\textit{\textbf{iii.} Encuentre los intervalos de concavidad y los puntos de inflexión.}
\medskip
Calculemos $f''(x)$.
Teniamos anteriormente que la derivada era $f'(x)=\tan x \sec^2 x$.
\begin{align*}
f''(x)&= \sec^2 (x) + [(1)(\sec ^2 x) + x(\sec^2 x)'\,]\\
&= \sec^2 x+(\sec^2 x+2\sec^2 x \cdot \tan x)\\
&= \sec^2 x+\sec^2 x+2\sec ^2 x \cdot \tan x\\
&= 2\sec^2 x+2 \sec^2 x \tan x\\
\intertext{Podemos factorizar por $\sec^2 x$:}
f''(x)&= 2\sec ^2 x (1+\tan x)\,.
\end{align*}
Entonces calculamos sus puntos criticos.
\end{document}
Responder2
\documentclass{article}
\usepackage[utf8]{inputenc}
\textwidth=16cm
\oddsidemargin=1cm
\usepackage{blindtext}
\title{Desarrolo}
\date{\today}
\author{Example}
\begin{document}
\maketitle
\section{Introduction}
\blindtext
\subsection*{Desarrollo}
\textit{
\textbf{iii.} Encuentre los intervalos de concavidad y los puntos de
inflexión.
}
\vspace{1cm}
\noindent
\section*{Calculemos $f''(x)$}
Teniamos anteriormente que la derivada era\medskip
\hspace{2cm}{ f'(x)= $ tan\;x \cdot sec^{2}\left[x\right]$\medskip}
\hspace{2cm}{\begin{tabular}{rl}
f'(x) = & $sec^{2}(x) + \left[(1)\cdot(sec ^{2}x)\cdot + x\cdot(sec
^2x)'\right]$ \\
=& $sec^{2}{x}+(sec^{2}{x}+2sec ^{2}{x} \cdot tan {x})$\\
=& $sec^{2}{x}+sec^{2}{x}+2 sec^{2}{x} \cdot tan {x}$\\
= & $2 sec^{2}{x}+2\cdot sec^{2}{x}\cdot tan {x}$\\
\end{tabular}\medskip }
Podemos factorizar por $\sec^{2}{x}$\\\medskip
{\hspace{2cm}{ f'(x) = =$ sec ^{2} x (2+2 tan x)$\medskip}
Entonces calculamos sus puntos criticos\medskip
\clearpage
\end{document}
Isso é formulado com instruções simples de látex. Você pode modificar de acordo com suas necessidades,