Preciso de ajuda para escrever uma permutação na notação de duas linhas de Cauchy que tenha muitas colunas, por favor. Como existem muitas colunas, ela se estende para fora da caixa horizontal. Decidi que a melhor coisa a fazer é dividi-lo em duas linhas.
Abaixo está um MWE. O primeiro produz a notação exatamente como eu gostaria se não se estendesse para fora da caixa horizontal. A segunda é uma tentativa de dividi-lo em duas linhas para que fique dentro da caixa horizontal. Estou mais ou menos feliz com o segundo, exceto pela forma como trata os parênteses. Quero que o parêntese esquerdo ocupe as duas primeiras linhas e o parêntese direito as duas últimas linhas.
\documentclass{article}
\usepackage{amsmath}
\usepackage{multirow}
\begin{document}
\begin{align*}
\sigma=\left(\begin{array}{cccccccccccccc}
1 & 2 & 3 & 4 & \ldots{} & \frac{n}{2}-1 & \frac{n}{2} & \frac{n}{2}+1 & \frac{n}{2}+2 & \ldots{} & n-3 & n-2 & n-1 & n \\
1 & \frac{n}{2}+1 & 3 & \frac{n}{2}+3 & \ldots{} & \frac{n}{2}-1 & n-1 & \frac{n}{2} & \frac{n}{2}+2 & \ldots{} & 4 & n-2 & 2 & n \\
\end{array}\right).
\end{align*}
\begin{align*}
\begin{tabular}{ccccccccc}
\multirow{2}{*}{$\sigma=($} & $1$ & $2$ & $3$ & $4$ & \ldots{} & $\frac{n}{2}-1$ & $\frac{n}{2}$ & \\
& $1$ & $\frac{n}{2}+1$ & $3$ & $\frac{n}{2}+3$ & \ldots{} & $\frac{n}{2}-1$ & $n-1$ & \\
& $\frac{n}{2}+1$ & $\frac{n}{2}+2$ & \ldots{} & $n-3$ & $n-2$ & $n-1$ & $n$ & \multirow{2}{*}{)} \\
& $\frac{n}{2}$ & $\frac{n}{2}+2$ & \ldots{} & $4$ & $n-2$ & $2$ & $n$ & \\
\end{tabular}.
\end{align*}
\end{document}
A notação de duas linhas de Cauchy é essencialmente apenas uma matriz com duas linhas, portanto, uma solução usando matrizes também seria adequada. Quaisquer outras sugestões para fazer com que a notação ocupe menos espaço também são bem-vindas.
Obrigado.
Responder1
Bem-vindo! Talvez algo assim?
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation*}
\sigma=\left(\begin{array}{@{}*{20}{c@{}}}
1 & 2 & 3 & 4 & \ldots{} & \frac{n}{2}-1 & \frac{n}{2} & \frac{n}{2}+1 & \frac{n}{2}+2 & \ldots{} & n-3 & n-2 & n-1 & n \\
1 & \frac{n}{2}+1 & 3 & \frac{n}{2}+3 & \ldots{} & \frac{n}{2}-1 & n-1 & \frac{n}{2} & \frac{n}{2}+2 & \ldots{} & 4 & n-2 & 2 & n \\
\end{array}\right).
\end{equation*}
or
\begin{equation*}
\sigma=\left(\begin{array}{@{}*{20}{c@{\,}}}
1 & 2 & 3 & 4 & \ldots{} & \frac{n}{2}-1 & \frac{n}{2} & \frac{n}{2}+1 & \frac{n}{2}+2 & \ldots{} & n-3 & n-2 & n-1 & n \\
1 & \frac{n}{2}+1 & 3 & \frac{n}{2}+3 & \ldots{} & \frac{n}{2}-1 & n-1 & \frac{n}{2} & \frac{n}{2}+2 & \ldots{} & 4 & n-2 & 2 & n \\
\end{array}\right).
\end{equation*}
\end{document}
Você também pode definir o \arraycolsep
valor que desejar.
\documentclass{article}
\usepackage{amsmath}
\setcounter{MaxMatrixCols}{20}
\begin{document}
\begin{equation*}\setlength{\arraycolsep}{0.5pt}
\sigma=\begin{pmatrix}
1 & 2 & 3 & 4 & \ldots{} & \frac{n}{2}-1 & \frac{n}{2} & \frac{n}{2}+1 & \frac{n}{2}+2 & \ldots{} & n-3 & n-2 & n-1 & n \\
1 & \frac{n}{2}+1 & 3 & \frac{n}{2}+3 & \ldots{} & \frac{n}{2}-1 & n-1 & \frac{n}{2} & \frac{n}{2}+2 & \ldots{} & 4 & n-2 & 2 & n \\
\end{pmatrix}.
\end{equation*}
\end{document}
Você pode querer fazer essas alterações localmente.
\documentclass{article}
\usepackage{amsmath}
\setcounter{MaxMatrixCols}{20}
\newenvironment{CauchyArray}[1][1pt]{\begingroup\setlength{\arraycolsep}{#1}\begin{pmatrix}}
{\end{pmatrix}\endgroup}
\begin{document}
\begin{equation*}
\sigma=\begin{CauchyArray}
1 & 2 & 3 & 4 & \ldots{} & \frac{n}{2}-1 & \frac{n}{2} & \frac{n}{2}+1 & \frac{n}{2}+2 & \ldots{} & n-3 & n-2 & n-1 & n \\
1 & \frac{n}{2}+1 & 3 & \frac{n}{2}+3 & \ldots{} & \frac{n}{2}-1 & n-1 & \frac{n}{2} & \frac{n}{2}+2 & \ldots{} & 4 & n-2 & 2 & n \\
\end{CauchyArray}.
\end{equation*}
\begin{equation*}
\sigma=\begin{CauchyArray}[1.5pt]
1 & 2 & 3 & 4 & \ldots{} & \frac{n}{2}-1 & \frac{n}{2} & \frac{n}{2}+1 & \frac{n}{2}+2 & \ldots{} & n-3 & n-2 & n-1 & n \\
1 & \frac{n}{2}+1 & 3 & \frac{n}{2}+3 & \ldots{} & \frac{n}{2}-1 & n-1 & \frac{n}{2} & \frac{n}{2}+2 & \ldots{} & 4 & n-2 & 2 & n \\
\end{CauchyArray}.
\end{equation*}
\end{document}
Responder2
Seu array
contém 14 colunas e, portanto, 13 espaços entre colunas. Para fazer com que seu array
(ou pmatrix
) ambiente caiba dentro do bloco de texto, você tem duas opções principais, não mutuamente exclusivas:
reduza o valor do
\arraycolsep
parâmetro (valor padrão: 5pt), que controla a quantidade de espaços em branco entre colunas. (Esta é a abordagem adotada noresposta anterior de @Schrödinger'scat.)reduza o valor do
\medmuskip
parâmetro (valor padrão: 4mu), que controla a quantidade de espaços em branco inseridos em torno de operadores binários como+
e-
.
Nove das 14 colunas da matriz contêm operações binárias +
e -
símbolos. Como demonstra a captura de tela a seguir, reduzir o valor de \medmuskip
from 4mu
to 1mu
permite aumentar o valor de \arraycolsep
from 1.25pt
back to 2.5pt
. Conseqüentemente, o espaço entre colunas agora excede o espaço ao redor dos símbolos +
e -
. Na minha opinião, isso proporciona um resultado mais equilibrado visualmente e, portanto, também mais legível.
\documentclass{article}
\usepackage{amsmath}
\setcounter{MaxMatrixCols}{14} % default: 10
\begin{document}
\[
\setlength\arraycolsep{1.25pt} % default: 5pt
\sigma=\begin{pmatrix}
1 & 2 & 3 & 4 & \ldots & \frac{n}{2}-1 & \frac{n}{2} & \frac{n}{2}+1 & \frac{n}{2}+2 & \ldots & n-3 & n-2 & n-1 & n \\
1 & \frac{n}{2}+1 & 3 & \frac{n}{2}+3 & \ldots & \frac{n}{2}-1 & n-1 & \frac{n}{2} & \frac{n}{2}+2 & \ldots & 4 & n-2 & 2 & n \\
\end{pmatrix}.
\]
\[
\setlength\arraycolsep{2.5pt} % default: 5pt
\setlength\medmuskip{1mu} % default: 4mu
\sigma=\begin{pmatrix}
1 & 2 & 3 & 4 & \dots & \frac{n}{2}-1 & \frac{n}{2} & \frac{n}{2}+1 & \frac{n}{2}+2 & \dots & n-3 & n-2 & n-1 & n \\
1 & \frac{n}{2}+1 & 3 & \frac{n}{2}+3 & \dots & \frac{n}{2}-1 & n-1 & \frac{n}{2} & \frac{n}{2}+2 & \dots & 4 & n-2 & 2 & n \\
\end{pmatrix}.
\]
\end{document}
Responder3
Veja como você pode dividir o objeto em duas linhas:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation*}
\sigma=\biggl(
\begin{aligned}[t]
& \begin{array}{@{}*{7}{c}@{}}
1 & 2 & 3 & 4 & \dots & \frac{n}{2}-1 & \frac{n}{2} \\
1 & \frac{n}{2}+1 & 3 & \frac{n}{2}+3 & \dots & \frac{n}{2}-1 & n-1
\end{array}
\\
& \begin{array}{@{}*{7}{c}@{}}
\frac{n}{2}+1 & \frac{n}{2}+2 & \ldots{} & n-3 & n-2 & n-1 & n \\
\frac{n}{2} & \frac{n}{2}+2 & \ldots{} & 4 & n-2 & 2 & n
\end{array}\biggr).
\end{aligned}
\end{equation*}
\end{document}
Alternativa:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{multline*}
\sigma=\biggl(
\begin{array}{@{}*{7}{c}@{}}
1 & 2 & 3 & 4 & \dots & \frac{n}{2}-1 & \frac{n}{2} \\
1 & \frac{n}{2}+1 & 3 & \frac{n}{2}+3 & \dots & \frac{n}{2}-1 & n-1
\end{array}
\\
\begin{array}{@{}*{7}{c}@{}}
\frac{n}{2}+1 & \frac{n}{2}+2 & \ldots{} & n-3 & n-2 & n-1 & n \\
\frac{n}{2} & \frac{n}{2}+2 & \ldots{} & 4 & n-2 & 2 & n
\end{array}\biggr).
\end{multline*}
\end{document}