Eu queria saber como é possível formatar longos sistemas de equações onde as equações precisam ser quebradas. Eu quero replicar isso
Aqui estão as 3 equações digitadas:
\begin{equation}
\frac{\partial u_r}{\partial t}+u_r\frac{\partial u_r}{\partial r}+\frac{u_{\theta }}{r}\frac{\partial u_r}{\partial \theta }-\frac{u_{\theta }^2}{r}+u_z\frac{\partial u_r}{\partial z}=\frac{\mu }{\rho \:}\left[\frac{\partial }{\partial r}\left(\frac{1}{r}\frac{\partial }{\partial r}\left(ru_r\right)\right)+\frac{1}{r^2}\frac{\partial ^2u_r}{\partial \theta ^2}+\frac{\partial ^2u_r}{\partial z^2}-\frac{2}{r^2}\frac{\partial u_{\theta }}{\partial \theta }\right]-\frac{1}{\rho }\frac{\partial P}{\partial r}
\end{equation}
\begin{equation}
\frac{\partial u_{\theta }}{\partial t}+u_r\frac{\partial u_{\theta }}{\partial r}+\frac{u_{\theta }}{r}\frac{\partial u_{\theta }}{\partial \theta }-\frac{u_ru_{\theta }}{r}+u_z\frac{\partial u_{\theta }}{\partial z}=\frac{\mu }{\rho \:}\left[\frac{\partial }{\partial r}\left(\frac{1}{r}\frac{\partial }{\partial r}\left(ru_{\theta }\right)\right)+\frac{1}{r^2}\frac{\partial ^2u_{\theta }}{\partial \theta ^2}+\frac{\partial ^2u_{\theta }}{\partial z^2}+\frac{2}{r^2}\frac{\partial u_{\theta }}{\partial \theta }\right]-\frac{1}{r\rho }\frac{\partial P}{\partial \theta }
\end{equation}
\begin{equation}
\frac{\partial u_z}{\partial t}+u_r\frac{\partial u_z}{\partial r}+\frac{u_{\theta }}{r}\frac{\partial u_z}{\partial \theta }+u_z\frac{\partial u_z}{\partial z}=\frac{\mu }{\rho \:}\left[\frac{1}{r}\frac{\partial }{\partial r}\left(r\frac{\partial u_z}{\partial \:r}\right)+\frac{1}{r^2}\frac{\partial ^2u_z}{\partial \theta ^2}+\frac{\partial ^2u_z}{\partial z^2}\right]-\frac{1}{\rho }\frac{\partial P}{\partial \theta }+g_z
\end{equation}
Posso dividir as equações individualmente, mas não sei como listá-las no formato mostrado acima. Qualquer coisa ajuda. Obrigado.
Responder1
Algo assim:
Eu usei um align*
ambiente doamsmathpacote com alinhamento após o primeiro sinal + e alguns \notag
comandos para suprimir números de equações intermediárias. Ao contrário do OP, sugiro fortemente que os iguais comecem na segunda linha das equações, em vez de estarem no final da primeira linha.
Aqui está o código:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align}
\frac{\partial u_r}{\partial t}+&u_r\frac{\partial u_r}{\partial r}
+\frac{u_{\theta }}{r}\frac{\partial u_r}{\partial \theta }
-\frac{u_{\theta }^2}{r}+u_z\frac{\partial u_r}{\partial z}
\\ &=\frac{\mu }{\rho \:}\left[\frac{\partial }{\partial r}
\left(\frac{1}{r}\frac{\partial }{\partial r}\left(ru_r\right)\right)
+\frac{1}{r^2}\frac{\partial ^2u_r}{\partial \theta ^2}
+\frac{\partial ^2u_r}{\partial z^2}
-\frac{2}{r^2}\frac{\partial u_{\theta }}{\partial \theta }\right]
-\frac{1}{\rho }\frac{\partial P}{\partial r}\notag\\
\frac{\partial u_{\theta }}{\partial t}+&u_r\frac{\partial u_{\theta }}{\partial r}
+\frac{u_{\theta }}{r}\frac{\partial u_{\theta }}{\partial \theta }
-\frac{u_ru_{\theta }}{r}+u_z\frac{\partial u_{\theta }}{\partial z}\\
&=\frac{\mu }{\rho \:}\left[\frac{\partial }{\partial r}
\left(\frac{1}{r}\frac{\partial }{\partial r}\left(ru_{\theta }\right)\right)
+\frac{1}{r^2}\frac{\partial ^2u_{\theta }}{\partial \theta ^2}
+\frac{\partial ^2u_{\theta }}{\partial z^2}
+\frac{2}{r^2}\frac{\partial u_{\theta }}{\partial \theta }\right]
-\frac{1}{r\rho }\frac{\partial P}{\partial \theta }
\notag\\
\frac{\partial u_z}{\partial t}+&u_r\frac{\partial u_z}{\partial r}
+\frac{u_{\theta }}{r}\frac{\partial u_z}{\partial \theta }
+u_z\frac{\partial u_z}{\partial z}\\
&=\frac{\mu }{\rho \:}\left[\frac{1}{r}\frac{\partial }{\partial r}
\left(r\frac{\partial u_z}{\partial \:r}\right)
+\frac{1}{r^2}\frac{\partial ^2u_z}{\partial \theta ^2}
+\frac{\partial ^2u_z}{\partial z^2}\right]
-\frac{1}{\rho }\frac{\partial P}{\partial \theta }+g_z\notag
\end{align}
\end{document}
Responder2
Outro código com alinhamento, mas incluindo as descrições à esquerda, e uma sintaxe mais simples com o diffcoeff
pacote:
\documentclass{article}
\usepackage{geometry}
\usepackage{amsmath}
\usepackage{diffcoeff}
\begin{document}
\begin{align}
r\text{-momentum:} & & & \diffp{u_r}{t} + u_r\diffp{u_r}{r} + \frac{u_{\theta }}{r}\diffp{u_r}{\theta }-\frac{u_{\theta }^2}{r} + u_z\diffp{u_r}{z} = \\
\notag & & & \frac{\mu }{\rho \:}\left[\diffp{}{r}\left(\frac{1}{r}\diffp{}{r}\left(ru_r\right)\right) + \frac{1}{r^2}\diffp[2]{u_r}{\theta} + \diffp[2]{u_r}{z}-\frac{2}{r^2}\diffp{u_{\theta }}{\theta }\right]-\frac{1}{\rho }\diffp{P}{r}\\[2ex]
%
\theta\text{-momentum:} & & & \diffp{u_{\theta }}{t} + u_r\diffp{u_{\theta }}{r} + \frac{u_{\theta }}{r}\diffp{u_{\theta }}{\theta }-\frac{u_ru_{\theta }}{r} + u_z\diffp{u_{\theta }}{z} = \\
\notag & & & \frac{\mu }{\rho \:}\left[\diffp{}{r}\left(\frac{1}{r}\diffp{}{r}\left(ru_{\theta }\right)\right) + \frac{1}{r^2}\diffp[2]{u_{\theta }}{\theta} + \diffp[2]{u_{\theta }}{z} + \frac{2}{r^2}\diffp{u_{\theta }}{\theta }\right]-\frac{1}{r\rho }\diffp{P}{\theta } \\[2ex]
%
z\text{-momentum:} & & & \diffp{u_z}{t} + u_r\diffp{u_z}{r} + \frac{u_{\theta }}{r}\diffp{u_z}{\theta } + u_z\diffp{u_z}{z} = \\
\notag & & & \frac{\mu }{\rho \:}\left[\frac{1}{r}\diffp{}{r}\left(r\diffp{u_z}{\:r}\right) + \frac{1}{r^2}\diffp[2]{u_z}{\theta} + \diffp[2]{u_z}{z}\right]-\frac{1}{\rho }\diffp{P}{\theta } + g_z
\end{align}
\end{document}