Corte de matrizes em multicol - 2 colunas

Corte de matrizes em multicol - 2 colunas

O problema

Ei, passei cerca de 3 horas tentando resolver esse problema no multicolLaTeX. Espero que ajude algumas pessoas:corte de matrizes em LaTeX

Então, como você pode ver, meus arrays no \align*ambiente estão cortados no multicolambiente que parecia bom no \align*ambiente:Matrizes em um align*ambiente

Aqui está meu código:

\begin{align*}...\end{align*}sem corte:

\documentclass[11pt]{article}
\usepackage{header}
\usepackage{pgfplots}
\allowdisplaybreaks
\renewcommand{\arraystretch}{1.5}

\begin{document}

\begin{align*} 
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & -\frac{5}{6} & -\frac{35}{3} \\
0 & 1 & 0 & 1 & 2 \\
0 & 1 & \frac{9}{5} & 0 & \frac{111}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{$R_3-\frac{9}{5}R_1$} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & -\frac{5}{6} & -\frac{35}{3} \\
0 & 1 & 0 & 1 & 2 \\
0 & 1 & 0 & \frac{3}{2} & \frac{216}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{$R_3-R_1$} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & -\frac{5}{6} & -\frac{35}{3} \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & \frac{1}{2} & \frac{206}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{Normalizing $R_3$} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & -\frac{5}{6} & -\frac{35}{3} \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & \frac{412}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{$R_2-R_3$} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & -\frac{5}{6} & -\frac{35}{3} \\
0 & 1 & 0 & 0 & -\frac{402}{5} \\
0 & 0 & 0 & 1 & \frac{412}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{$R_1+\frac{5}{6}R_3$} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & 0 & \frac{171}{3} \\
0 & 1 & 0 & 0 & -\frac{402}{5} \\
0 & 0 & 0 & 1 & \frac{412}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{Rearranging into Row Echelon Form} \\
\left[\begin{array}{cccc|c} 
1 & 0 & 0 & 0 & 19 \\
0 & 1 & 0 & 0 & -\frac{402}{5} \\
0 & 0 & 1 & 0 & \frac{171}{3} \\
0 & 0 & 0 & 1 & \frac{412}{5}
\end{array}\right] \\ 
\end{align*}

\end{document}

\multicolcom o corte:

\documentclass[11pt]{article}
\usepackage{header}
\usepackage{pgfplots}
\usepackage{multicol}
\allowdisplaybreaks
\setlength{\columnsep}{0cm} 
\setlength{\columnseprule}{0.4pt}
\renewcommand{\arraystretch}{1.5}

\begin{document}
\begin{multicol*}{2}
\begin{align*} 
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & -\frac{5}{6} & -\frac{35}{3} \\
0 & 1 & 0 & 1 & 2 \\
0 & 1 & \frac{9}{5} & 0 & \frac{111}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{$R_3-\frac{9}{5}R_1$} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & -\frac{5}{6} & -\frac{35}{3} \\
0 & 1 & 0 & 1 & 2 \\
0 & 1 & 0 & \frac{3}{2} & \frac{216}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{$R_3-R_1$} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & -\frac{5}{6} & -\frac{35}{3} \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & \frac{1}{2} & \frac{206}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{Normalizing $R_3$} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & -\frac{5}{6} & -\frac{35}{3} \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & \frac{412}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{$R_2-R_3$} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & -\frac{5}{6} & -\frac{35}{3} \\
0 & 1 & 0 & 0 & -\frac{402}{5} \\
0 & 0 & 0 & 1 & \frac{412}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{$R_1+\frac{5}{6}R_3$} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & 0 & \frac{171}{3} \\
0 & 1 & 0 & 0 & -\frac{402}{5} \\
0 & 0 & 0 & 1 & \frac{412}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{Rearranging into Row Echelon Form} \\
\left[\begin{array}{cccc|c} 
1 & 0 & 0 & 0 & 19 \\
0 & 1 & 0 & 0 & -\frac{402}{5} \\
0 & 0 & 1 & 0 & \frac{171}{3} \\
0 & 0 & 0 & 1 & \frac{412}{5}
\end{array}\right] \\ 
\end{align*}

\end{multicol*}

\end{document}

A solução

Se a sua solução LaTeX compilada for dividir o longo \begin{align*}...\end{align*}em alguns `\begin{align*}...\end{align*}' então você terá algo como:

\begin{multicol}{2}
...
\begin{align*}...\end{align*}
\begin{align*}...\end{align*}
\begin{align*}...\end{align*}
...
\end{multicol}

Então, código correto:

\begin{multicol*}{2}
\begin{align*}
\text{Simplifying} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & -\frac{5}{6} & -\frac{35}{3} \\
0 & 1 & 0 & 1 & 2 \\
0 & 1 & \frac{9}{5} & 0 & \frac{111}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{$R_3-\frac{9}{5}R_1$} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & -\frac{5}{6} & -\frac{35}{3} \\
0 & 1 & 0 & 1 & 2 \\
0 & 1 & 0 & \frac{3}{2} & \frac{216}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\end{align*}
\begin{align*}
\text{$R_3-R_1$} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & -\frac{5}{6} & -\frac{35}{3} \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & \frac{1}{2} & \frac{206}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{Normalizing $R_3$} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & -\frac{5}{6} & -\frac{35}{3} \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & \frac{412}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{$R_2-R_3$} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & -\frac{5}{6} & -\frac{35}{3} \\
0 & 1 & 0 & 0 & -\frac{402}{5} \\
0 & 0 & 0 & 1 & \frac{412}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\end{align*}
\begin{align*}
\text{$R_1+\frac{5}{6}R_3$} \\
\left[\begin{array}{cccc|c} 
0 & 0 & 1 & 0 & \frac{171}{3} \\
0 & 1 & 0 & 0 & -\frac{402}{5} \\
0 & 0 & 0 & 1 & \frac{412}{5} \\
1 & 0 & 0 & 0 & 19
\end{array}\right] \\ \\
\text{Rearranging into Row Echelon Form} \\
\left[\begin{array}{cccc|c} 
1 & 0 & 0 & 0 & 19 \\
0 & 1 & 0 & 0 & -\frac{402}{5} \\
0 & 0 & 1 & 0 & \frac{171}{3} \\
0 & 0 & 0 & 1 & \frac{412}{5}
\end{array}\right] \\ 
\end{align*}

\end{multicols*}


\end{document}

informação relacionada