Coloque a figura ao lado de dois ambientes enumerados, lado a lado

Coloque a figura ao lado de dois ambientes enumerados, lado a lado

Isto é o que eu gostaria de ter: insira a descrição da imagem aqui

Isto é o que tenho atualmente:

\documentclass{report}

\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
  \def\svgwidth{#1\columnwidth}
  \import{./figures/}{#2.pdf_tex}
}

\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.

\begin{wrapfigure}{r}{0.4\linewidth}
  \centering
  \caption{$y = g(x)$}
  \incfig[0.4]{limit-graph}
  \label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
  \begin{enumerate}
    \item[\textbf{2.)}] $g(5)$.
      \vspace{2cm}
    \item[\textbf{10.)}] $g(-2)$.
      \vspace{2cm}
    \item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
      \vspace{2cm}
    \end{enumerate}\columnbreak\begin{enumerate}
    \item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
      \vspace{2cm}
    \item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
      \vspace{2cm}
    \item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
      \vspace{2cm}
  \end{enumerate}
\end{multicols}

Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\

\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}

Mas esta é a saída:

insira a descrição da imagem aqui

O que estou fazendo de errado?

Responder1

Proponho usar o pacote de tarefas e colocar o gráfico em uma minipágina

    %https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
    \documentclass{report}
    \usepackage{tasks}
    \usepackage{graphicx}


    \parindent=0pt
    \settasks{label=\bfseries\arabic*.),label-width=2em}
    \begin{document}
    Copy each of the following expressions onto your paper and either state the
    value or state that the value is undefined or doesn't exist. Make sure that
    when discussing the values you use proper terminology. All expressions are in
    reference to the function $g$ shown in Figure.

    \begin{minipage}[t]{0.6\linewidth}
        \vspace{0pt}
    \begin{tasks}[start=2](2)
        \task $g(5)$.
        \vspace{2cm}
        \task $g(-2)$.
        \vspace{2cm}
    \end{tasks}
    \begin{tasks}[start=10](2)
        \task $\lim_{x \to 2^{+}} g(t)$.
        \vspace{2cm}
        \task $\lim_{t \to 5} g(t)$.
        \vspace{2cm}
        \task $\lim_{t \to 2^{-}} g(t)$.
        \vspace{2cm}
        \task $\lim_{x \to -2} g(t)$.
        \vspace{2cm}
    \end{tasks}
    \end{minipage}%
    \begin{minipage}[t]{0.4\linewidth}
        \vspace{0pt}
        \centering
        \includegraphics[width=\linewidth]{example-image-duck}
        $y = g(x)$
    \end{minipage}

    Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
    each of the following limit values. Make sure that you include table numbers,
    table captions, and meaningful column headings. Make sure that your input
    values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
    sure that you round your output values in such a way that a clear and
    compelling pattern in the output is clearly demonstrated by your stated
    values. Make sure that you state the limit value!
    [\textbf{\textit{2pts}}] 

    \begin{tasks}[start=19](2)
    \task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
    \end{tasks}
    \end{document}

EDITAR2espaço do problema Uma solução melhor com paracol.

A opção de depuração do pacote é muito interessante

            %https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
            \documentclass{report}
            \usepackage{graphicx}
            \usepackage{tasks}
            \usepackage{paracol}

            \parindent=0pt
            \settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm,debug}
            %\settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm}
            \begin{document}

            Copy each of the following expressions onto your paper and either state the
            value or state that the value is undefined or doesn't exist. Make sure that
            when discussing the values you use proper terminology. All expressions are in
            reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.

            \smallskip
            \begin{paracol}{2}
        \begin{tasks}[start=2](2)
        \task $g(5)$.
        \task $g(-2)$.
    \end{tasks}
    \begin{tasks}[start=10](2)
        \task $\lim_{x \to 2^{+}} g(t)$.
        \task $\lim_{t \to 5} g(t)$.
        \task $\lim_{t \to 2^{-}} g(t)$.
        \task $\lim_{x \to -2} g(t)$.
    \end{tasks}
    \switchcolumn
    \begin{figure}
    \includegraphics[width=\linewidth,height=7cm]{example-image-duck}
    \caption{$y = g(x)$}
    \label{fig:limit_graph}    
    \end{figure}
    \end{paracol}       

            Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
            each of the following limit values. Make sure that you include table numbers,
            table captions, and meaningful column headings. Make sure that your input
            values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
            sure that you round your output values in such a way that a clear and
            compelling pattern in the output is clearly demonstrated by your stated
            values. Make sure that you state the limit value!
            [\textbf{\textit{2pts}}] 

            \begin{tasks}[start=19]
            \task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
            \end{tasks}
            \end{document}

Responder2

Aqui está minha solução:

\documentclass{report}

\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
  \def\svgwidth{#1\columnwidth}
  \import{./figures/}{#2.pdf_tex}
}

\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.

\begin{wrapfigure}[7]{r}{0.4\linewidth}
  \centering
  \incfig[0.4]{limit-graph}
  \caption{$y = g(x)$}
  \label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
  \begin{enumerate}
    \item[\textbf{2.)}] $g(5)$.
      \vspace{2cm}
    \item[\textbf{10.)}] $g(-2)$.
      \vspace{2cm}
    \item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
      \vspace{2cm}
    \end{enumerate}\columnbreak\begin{enumerate}
    \item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
      \vspace{2cm}
    \item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
      \vspace{2cm}
    \item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
      \vspace{2cm}
  \end{enumerate}
\end{multicols}
\vspace{1.1cm}

Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\

\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}

Aqui está o resultado:

insira a descrição da imagem aqui

Eu não mudei muito. Acabei de alterar a localização da legenda e forneci explicitamente o número de linhas para contornar, wrapfigurepara que não continue no próximo parágrafo.

informação relacionada