
Isto é o que eu gostaria de ter:
Isto é o que tenho atualmente:
\documentclass{report}
\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
\def\svgwidth{#1\columnwidth}
\import{./figures/}{#2.pdf_tex}
}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.
\begin{wrapfigure}{r}{0.4\linewidth}
\centering
\caption{$y = g(x)$}
\incfig[0.4]{limit-graph}
\label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
\begin{enumerate}
\item[\textbf{2.)}] $g(5)$.
\vspace{2cm}
\item[\textbf{10.)}] $g(-2)$.
\vspace{2cm}
\item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
\vspace{2cm}
\end{enumerate}\columnbreak\begin{enumerate}
\item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
\vspace{2cm}
\item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
\vspace{2cm}
\item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
\vspace{2cm}
\end{enumerate}
\end{multicols}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\
\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}
Mas esta é a saída:
O que estou fazendo de errado?
Responder1
Proponho usar o pacote de tarefas e colocar o gráfico em uma minipágina
%https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
\documentclass{report}
\usepackage{tasks}
\usepackage{graphicx}
\parindent=0pt
\settasks{label=\bfseries\arabic*.),label-width=2em}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure.
\begin{minipage}[t]{0.6\linewidth}
\vspace{0pt}
\begin{tasks}[start=2](2)
\task $g(5)$.
\vspace{2cm}
\task $g(-2)$.
\vspace{2cm}
\end{tasks}
\begin{tasks}[start=10](2)
\task $\lim_{x \to 2^{+}} g(t)$.
\vspace{2cm}
\task $\lim_{t \to 5} g(t)$.
\vspace{2cm}
\task $\lim_{t \to 2^{-}} g(t)$.
\vspace{2cm}
\task $\lim_{x \to -2} g(t)$.
\vspace{2cm}
\end{tasks}
\end{minipage}%
\begin{minipage}[t]{0.4\linewidth}
\vspace{0pt}
\centering
\includegraphics[width=\linewidth]{example-image-duck}
$y = g(x)$
\end{minipage}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}]
\begin{tasks}[start=19](2)
\task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{tasks}
\end{document}
EDITAR2espaço do problema Uma solução melhor com paracol.
A opção de depuração do pacote é muito interessante
%https://tex.stackexchange.com/questions/661529/place-figure-next-to-two-enumerate-enivronments-side-by-side
\documentclass{report}
\usepackage{graphicx}
\usepackage{tasks}
\usepackage{paracol}
\parindent=0pt
\settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm,debug}
%\settasks{label=\bfseries\arabic*.),label-width=2em,before-skip = 0pt,after-skip=2cm,after-item-skip = 2cm}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.
\smallskip
\begin{paracol}{2}
\begin{tasks}[start=2](2)
\task $g(5)$.
\task $g(-2)$.
\end{tasks}
\begin{tasks}[start=10](2)
\task $\lim_{x \to 2^{+}} g(t)$.
\task $\lim_{t \to 5} g(t)$.
\task $\lim_{t \to 2^{-}} g(t)$.
\task $\lim_{x \to -2} g(t)$.
\end{tasks}
\switchcolumn
\begin{figure}
\includegraphics[width=\linewidth,height=7cm]{example-image-duck}
\caption{$y = g(x)$}
\label{fig:limit_graph}
\end{figure}
\end{paracol}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}]
\begin{tasks}[start=19]
\task $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{tasks}
\end{document}
Responder2
Aqui está minha solução:
\documentclass{report}
\usepackage{wrapfig}
\usepackage{multicol}
\usepackage{import}
\pdfminorversion=7
\usepackage{pdfpages}
\usepackage{transparent}
\newcommand{\incfig}[2][]{%
\def\svgwidth{#1\columnwidth}
\import{./figures/}{#2.pdf_tex}
}
\begin{document}
Copy each of the following expressions onto your paper and either state the
value or state that the value is undefined or doesn't exist. Make sure that
when discussing the values you use proper terminology. All expressions are in
reference to the function $g$ shown in Figure~\ref{fig:limit_graph}.
\begin{wrapfigure}[7]{r}{0.4\linewidth}
\centering
\incfig[0.4]{limit-graph}
\caption{$y = g(x)$}
\label{fig:limit_graph}
\end{wrapfigure}
$ $
\begin{multicols}{2}
\begin{enumerate}
\item[\textbf{2.)}] $g(5)$.
\vspace{2cm}
\item[\textbf{10.)}] $g(-2)$.
\vspace{2cm}
\item[\textbf{12.)}] $\lim_{x \to 2^{+}} g(t)$.
\vspace{2cm}
\end{enumerate}\columnbreak\begin{enumerate}
\item[\textbf{3.)}] $\lim_{t \to 5} g(t)$.
\vspace{2cm}
\item[\textbf{11.)}] $\lim_{t \to 2^{-}} g(t)$.
\vspace{2cm}
\item[\textbf{13.)}] $\lim_{x \to -2} g(t)$.
\vspace{2cm}
\end{enumerate}
\end{multicols}
\vspace{1.1cm}
Create tables similar to Tables 2.1.3 and 2.1.4 from which you can deduce
each of the following limit values. Make sure that you include table numbers,
table captions, and meaningful column headings. Make sure that your input
values follow patterns similar to those used in Tables 2.1.3 and 2.1.3. Make
sure that you round your output values in such a way that a clear and
compelling pattern in the output is clearly demonstrated by your stated
values. Make sure that you state the limit value!
[\textbf{\textit{2pts}}] \\\\
\textbf{19.)} $\displaystyle\lim_{x \to 1^{+}} \frac{\sin(x + 1)}{3x + 3}$.
\end{document}
Aqui está o resultado:
Eu não mudei muito. Acabei de alterar a localização da legenda e forneci explicitamente o número de linhas para contornar, wrapfigure
para que não continue no próximo parágrafo.